Uniform Convergence of the Deep

Galerkin Method for the Mean Field

Control Problem

Jake Hofgard
A thesis presented for the degree of

Bachelor of Science with Honors

Department of Mathematics
Stanford University

May 2024

Acknowledgements

I would like to thank Prof. Asaf Cohen, my advisor through the University of
Michigan Mathematics REU, for providing feedback, advice, and support over
the course of the last year as this project has developed from its conceptual-
ization to a nearly complete publication. Additionally, I would like to thank
Prof. Lenya Ryzhik, my honors thesis advisor at Stanford University, for his
advice and feedback. I am also grateful for the support and encouragement
provided by my peers in the math department, including (but certainly not
limited to) Shaunak Bhandarkar, Owen Brass, Jasper Shogren—Knaak, Kai
Fronsdal, Aditi Talati, and Sidhart Krishnan. Finally, I would like to thank
my partner, Natasha Johnson, and my family for their continued support over

the course of my time at Stanford.

Abstract

We establish the convergence of the deep Galerkin method (DGM), a deep
learning-based numerical method for solving high-dimensional nonlinear PDEs,
for Hamilton—Jacobi-Bellman (HJB) equations that arise from the study of
mean field control problems (MFCPs). Based on a recent characterization
of the value function of the MFCP as the unique viscosity solution of an
HJB equation on the simplex, we establish both an existence and conver-
gence result for the DGM. First, we show that the loss functional of the DGM
can be made arbitrarily small given that the value function of the MFCP
possesses sufficient regularity. Then, we show that if the loss functional of
the DGM converges to zero, the corresponding neural network approximators
must converge uniformly to the true value function on the simplex. We also
provide numerical experiments demonstrating the DGM’s ability to generalize

to high-dimensional HJB equations.

Contents

1 Introduction

1.1 N-Agent Optimization Problems
1.2 Mean Field Control Problems

1.3 Numerical Solutions to High-Dimensional PDE

1.4 Main Results

1.5 Notation

1.6 Organization

Assumptions and Known Results for the MFCP

2.1 Assumptions for the MFCP

2.2 Existence, Uniqueness, and Convergence Results for the MFCP

2.3 Derivations of HJB Equations

3 Convergence of the DGM

3.1 DGM Algorithm

3.2 Universal Approximation Via Neural Networks

3.3 Uniform Convergence of DGM Approximators
3.4 Comparison to DGM Algorithm with L?-Loss

3.4.1 Equicontinuous and Uniformly-Bounded Neural Networks

3.4.2 Stability Properties of the DGM

4 Numerical Experiments
4.1 DGM Experiments
4.2 Improved Sampling Via Adversarial Training

5 Conclusions

o =~ N =

10
12
13

14
14
15
17

24
25
34
42
48
D2
o4

58
o8
63

67

CONTENTS

References

69

Chapter 1

Introduction

We consider the convergence of a deep learning-based numerical method for solving
Hamilton—Jacobi-Bellman (HJB) equations that arise from the study of mean field control
problems (MFCPs). The specific class of HJB equations that we consider are first-order,

nonlinear PDEs on the (d — 1)-dimensional simplex S, of the following form:

— 9,V (t,m)+ Z m;H'(t,m, D'V (t,m)) = 0,
i€[d]

V(T,m) = Z mig'(m).

ie[d]

(1.1)

Above, [d] = {1,...,d}, V : [0,T] x Sq — R is the value function (i.e., the optimal
cost) of an associated MFCP, H'" is a Hamiltonian, and D’ denotes a derivative along the
simplex, namely D'V (t,m) = (O, —m,V (t,m));e[q)- Note that on the simplex, directional
derivatives are only permitted in the directions e; —e;, where e; denotes the ith standard
basis vector in R%. We focus on solving Equation (1.1) numerically using neural networks.

Our numerical approach is primarily based on the deep Galerkin method (DGM),
as first introduced by [1]. In particular, we solve the above class of PDEs using a deep
learning-based algorithm motivated by classical finite element methods. However, instead
of finding a basis of functions to approximate solutions as in the classical method, we uti-
lize a sufficiently rich class of neural networks to approximate solutions to Equation (1.1).
In addition to proving the convergence of our numerical scheme under the assumptions
outlined in Section 3.3, we provide numerical experiments that demonstrate the validity

of this approach. First, however, we motivate the study of MFCPs by introducing the

1.1 N-Agent Optimization Problems

corresponding N-agent optimization problem in Section 1.1. In turn, we introduce the
MFCP model in Section 1.2, describe the current field of solving high-dimensional PDE
using deep learning in Section 1.3, and outline our main results in Section 1.4. Sec-
tion 1.5 describes common notation used throughout this thesis, and Section 1.6 provides

a roadmap for the remainder of this thesis.

1.1 N-Agent Optimization Problems
In the N-agent problem, we assume that the dynamics in
P(Xpo = | Xi = %) = Quyo(t, Bu(t, %), 1) + o(h) (1.2)

hold, and N cooperating agents aim to minimize the common cost

N
JN(B) = %Z U FtXE Bt X))t + (X3,)| (1.3)

where the running cost f and terminal cost g depend on the agents’ empirical distribution,

with coordinates given by

1 N
Hie =5 D Lxi=
k=1

for i € {1,...,d}. Let A denote the set of admissible controls, which we take to be
measurable, Markovian feedback controls. Note that in the N-agent setting, a control
B € AV consists of a sequence of N controls, one for each agent. Next, we define the
associated value function (which we aim to describe as the solution to an appropriate

HJB equation) by

=t inf_ JN(t, B,x), (1.5)

assuming that minimizing the cost in (1.3) is the goal of the agents. We make the same

assumptions as [2], discussed in detail below, so that the value function v belongs to

1.1 N-Agent Optimization Problems

CH([0,T] x Sq); see [2, Theorem 3.5]. In particular, this ensures that the HJB equation
for the N-agent optimization problem (and the MFCP) has a classical solution.

Below, let [d]Y = {1,...,d}". Then, given x € [d]", we define [x7*,j] € [d]" for
j € [d]" by

In turn, given u : [d]Y — RY, we define Afu € R? by Afu(x); = u([x7%, j]) — u(x).

We utilize the notation ;. to denote the ith row of the transition rate matrix
(Qij)ijepapy- From this, we define the pre-Hamiltonian H' : [0,7] x A x Sy x RY - R
for each ¢ € [d] by

H(t,a,m, z) == —(Qio(t,a,m), 2) — f(t,i,a,m). (1.6)
In turn, the corresponding Hamiltonian is given by

H'(t,m, z) = sup H'(t,a,m, 2) (1.7)
acA

for each i € [d]. With this notation out of the way, we can state the HJB equation for

the N-agent optimization problem.

Proposition 1.1.1. The value function vV defined in Equation (1.4) is C* in time and
uniquely solves the HJB equation

N RS @ N k, N
—t,x)+N;H’“(t,ux,NAv (t,x)) =0,
- (1.8)

N
1
oM(T, z) = N ;g(iﬂk, [y

In [2], it is shown that the above N-agent optimization problem is in fact equivalent
to a single optimization problem in terms of the empirical distribution of the agents. This

problem is given by a time-inhomogeneous Markov chain with dynamics given by

1)
P <,uﬁh =m+ N((Sj — &) /Liv = m> = Nm;Q; ;(t,an(t,i,m), m)h + o(h), (1.9)

1.2 Mean Field Control Problems

where m € S¥, i # j € [d], and each o (¢,-,m) € A is now a single control that depends
only on the state of each agent and the empirical distribution of the agents. The cost

functional the problem is now given by the expression

T
TV (ax,t,m) =K / D migpi (5,0, an(s,1, 1)), pl)ds + Y pirg'(ng) | - (1.10)
t ield] i€[d]

Defining

D" u(m) .= N (U(m + %(@' — i) — U(m)) ,

we have the following analogous proposition.

Proposition 1.1.2. The value function VN for the control problem described by Equa-
tions (1.9) — (1.10) is C* in time and uniquely solves the HJB equation

ovN i N,y N
— W(t’ m) + Z mzH <t7m7 D ’ V (t7m)) = 07
i€[d] | (1.11)
VN(T,m) =Y mag'(m).
1€[d]

As noted above and shown in [2, Proposition 2.6], the HJB equations in Proposi-
tion 1.1.1 and Proposition 1.1.2 are equivalent. The two problems are equivalent in the
sense that, using optimal controls from either the original N-agent optimization problem
or the reformulated problem in which the agents only interact through their empirical

distribution, the agents will follow the same trajectories.

1.2 Mean Field Control Problems

MFCPs are limiting models for cooperative games with a finite, but large, number of
interacting agents attempting to minimize a common cost, as outlined in the preceding
section. Namely, the study of MFCPs is motivated by situations in which a large number
of agents aim to achieve a common goal. Applications arise in the control of autonomous
vehicles and drones [3, 4], efficient real-time streaming between devices [5], decentralized
and centralized crowd motion [6, 7], analysis of wireless local-area networks (WLANS)

8, 9], among many other related applications. The inception of limiting models for many-

4

1.2 Mean Field Control Problems

agent games can be traced back to Aumann’s work in 1964 and Schmeidler’s influential
contribution in 1973; see [10] and [11]. In the context of stochastic dynamical games,
mean field game (MFG) theory, which now encapsulates both MFCPs and their coun-
terpart mean field games (MFGs), was first developed by Lasry and Lions in [12] and
independently by Huang, Caines, and Malhamé in [13].

At this point, we distinguish between MFCPs and MFGs. While both are frame-
works for approximating games involving numerous players, the former models coopera-
tive games whereas the latter models non-cooperative games. MFCPs represent optimal
control problems for McKean—Vlasov dynamics, where the value function (optimal cost)
is often described by a HJB equation. Conversely, in MFGs, Nash equilibria are approx-
imated through a fixed point of a best response map, and the value function (which de-
scribes the cost under equilibrium for the MFG) is characterized by the so-called “master
equation.” For more details on the master equation, including its formulation, relevance
to MFGs, and deep learning-based methods for obtaining solutions, see [14].

Further work by Carmona and Delarue [15] and Andersson and Djehiche [16] provided
a probabilistic framework for mean field games through the analysis of forward-backward
stochastic differential equations (FBSDEs) of a McKean—Vlasov type. Recent work by
Pham and Wei also derived a dynamic programming principle and HJB equation for the
MFCP by framing it as a deterministic control problem of a Fokker—Planck equation;
see [17, 18]. Even more recently, work by Cecchin [2] established important existence
and uniqueness results for the HJB equation corresponding to the finite-state MFCP
that we consider here. For a comprehensive overview of MFG theory, MFCPs, and their
respective relationships to stochastic games and control problems, see [19, 20, 21].

Given current advances in deep learning, there has been recent progress towards solv-
ing both MFGs and MFCPs numerically using deep learning [22, 23]. Building on the
theoretical results in [2], we aim to provide a novel pathway towards solving MFCPs us-
ing deep learning. In practice, finding the optimal control in N-agent stochastic control
problems quickly becomes intractable as N grows. As a result, the MFCP is of theo-
retical and practical interest in stochastic control. Here, we provide a short motivation
for its structure. As N approaches infinity, the N-agent optimization problem resembles

an optimization problem involving a single representative agent whose dynamics follow a

1.2 Mean Field Control Problems

controlled continuous-time Markov chain of the form:
P(Xon =7 | Xs =1) = i j(s)h + o(h) as h — 0%, (1.12)

where the feedback control of the representative agent «; ;(s) is a measurable, Markovian
function, standing for the transition rate of the above process from state ¢ to j, both
in [d]. Throughout, we consider only rate matrices satisfying «; ;(s) € [0, M] for all
i # j,1,7 € [d], s € [to, T] and some constant M > 0. We refer to this set of rate matrices
as admissible controls. We denote the set of admissible controls by A := [0, M]*". Above,
«; refers to the ith row of the transition matrix a. At this point, there may appear to
be a gap between the richness of the feedback controls allowed in the N-agent problem
versus the single feedback control of the MFCP. However, this is not the case. Given the
symmetry among the N agents in the original optimization problem, one can consider
substituting their transition rates with functions of the form 5*(s, X*, u;-) that depend
on the empirical distribution of agents. Guided by the propagation of chaos result in
2], we anticipate the convergence of (41})iej, 1] toward a deterministic flow of measures,
approximating the distributions of each coordinate in X. This deterministic framework
implies that, in the limit, we can anticipate the control’s dependence on both the current
time t and the present state 7.

With this aside out of the way, note that as in the N-agent case, the representative

agent aims to minimize the cost

J(to, my,,) :=E [/t f(s, Xs, ax,(s), Law(X;))ds + g(Xr, Law(X7)) | , (1.13)

where my, is the initial distribution of the process X. Above, Law(X,,) = my, € Sy is
predetermined. This problem can be alternatively described as a deterministic control
problem in terms of the Fokker-Planck equation for (ji, := Law(Xj))scft,,77- In particular,
for a given admissible control «, the measure p uniquely solves the ordinary differential

equation (ODE):

d ; j i .
gt = Z (kleji(s) — ppvi(s)) i€ [d], telt,T],
jeld] (1.14)

Mto = mto 9

1.2 Mean Field Control Problems

and the cost functional for the deterministic control problem becomes
J (to, My, / > fls.d,ails), pe)pids + > gt (pr)p (1.15)
to

ie[d] i€[d]

Given an initial time ¢y € [0, T, the value function V' : [0, T] xSy — R of the deterministic

control problem is then defined by

V(t,m) = inf J(t,a, m). (1.16)

acA

By standard optimal control arguments via an appropriate dynamic programming princi-
ple, presented in Section 2.3 below, this gives rise to the HJB equation in Equation (1.1).
As in the N-agent optimization problem, we utilize the notation (); to denote the ith
row of the transition rate matrix (Q;;); jefq~. From this, we define the pre-Hamiltonian

Hi:[0,T] x A x Sqg x RY— R for each i € [d] by
H(t,a,m, z) == —(Qio(t,a,m), 2) — f(t,i,a,m). (1.17)
In turn, the corresponding Hamiltonian is given by

H'(t,m, z) := sup H'(t,a,m, z) (1.18)
acA

for each i € [d]. We also define a map H : [0,T] x S; x R? — R by

H(t,m,z) Z miH'(t,m, z) (1.19)
i€[d]

Note that we refer to both H and H as Hamiltonians. To avoid confusion, we occasionally
employ the term PDE-Hamiltonian specifically for H. Under the assumptions presented
in Section 2.1 below, the above equation has a unique maximizer [24], which we denote
by a*(t,i,m, z) for each ¢ € [d]. In turn, the unique optimal control for the MFCP is
given by

a,(t,m) = aj(t,i,m, D'V (t,m)), (1.20)

where the directional derivative of the value function D'V (¢,m) on the simplex S¢ is as

7

1.3 Numerical Solutions to High-Dimensional PDE

defined in Equation (1.1). Additionally, the dynamics of the process p under the optimal
control satisfy the dynamics in Equation (1.14) upon replacing the control therein with
the optimal control from Equation (1.20), as shown in [2].

Importantly, recent work described in full detail in Section 2 rigorously establishes
the connection between this N-agent stochastic control problem and the corresponding
MFCP. In particular, Cecchin [2] formulates the MFCP in terms of the deterministic
optimal control of a Fokker-Planck equation as in Equations (1.14) and (1.15). The
resulting deterministic control problem yields a dynamic programming principle and the
HJB equation (1.1), solved by the value function of the MFCP. Above, however, we
obtained two HJB equations: one for the N-agent optimization problem and one for the
MFCP. Both HJB equations have unique viscosity solutions, as shown in [2]. In turn,
2] establishes an explicit rate of convergence between V¥, the value function for the
N-agent problem, and V', the value function for the MFCP. In particular, a convergence
rate of 1/v/N is established.

In a similar vein, Kolokoltsov [25] obtains a convergence rate of 1/N under additional
regularity assumptions. Notably, [2] places no regularity assumptions on the value func-
tion V' (other than Lipschitz continuity) and, in the most general case, does not require
convexity of the running or terminal costs of the MFCP. Given the relationship between
the N-agent problem and the MFCP, by approximately solving the HJB equation for the

MFCP, one could also use our method to approximately solve the N-agent problem.

1.3 Numerical Solutions to High-Dimensional PDE

We aim to construct a numerical scheme for efficiently solving the HJB equation asso-
ciated with the MFCP. In particular, as the dimension d increases, the so-called “curse
of dimensionality” prevents standard numerical schemes (e.g., Monte Carlo methods,
mesh-based algorithms, etc.) from solving the HJB equation in a tractable manner.
However, recent advancements in deep learning present promising options for solving
high-dimensional, nonlinear PDEs such as the HJB equation in Equation (1.1).

Two leading methods have been presented for solving parabolic PDEs that resemble
the HJB equation: the deep Galerkin method (DGM) and deep backward stochastic dif-
ferential equations (BSDE). The primary focus of this thesis is the DGM. This approach,

1.3 Numerical Solutions to High-Dimensional PDE

first introduced in [1], models itself after classical finite element methods for solving low-
dimensional PDEs. However, the DGM is a mesh-free method; instead of creating basis
functions that approximate the solution to a PDE from a mesh, the DGM utilizes neural
network approximations that only depend on the parameters, architecture, and activa-
tion function between layers of the network. The loss functional of the DGM with L?-loss
attempts to minimize the L2-error of both the PDE and the terminal condition during
training, ultimately learning the parameters that best approximate the solution of the
PDE. In [1], the authors introduce the DGM, illustrate its ability to numerically solve
high-dimensional, nonlinear PDEs; and provide a convergence guarantee for second-order,
nonlinear parabolic PDEs.

The second popular deep learning-based method for solving high-dimensional PDEs,
introduced in [26] and expanded upon in [27, 28], exploits the connection between nonlin-
ear parabolic PDEs and backward SDEs that can be exploited via a so-called nonlinear
Feynman-Kac formula. In turn, the resulting backward SDE can be solved numerically
by recursively using a sequence of neural networks to solve the SDE along a specified
discretization of the time interval in question, starting with the terminal condition of the
original PDE. Although this method, often referred to as deep BSDE, is likely applicable
to our context, we defer further consideration of deep backward schemes to future work.

Since 2020, several review articles have brought up the potential for solving MFCPs
with deep learning methods, including the DGM and deep BSDE, but they note that
so far that no convergence guarantee has been provided for these methods; see [29, 30].
Similarly, [31] provides a broad sampling of applications of deep BSDE-like algorithms to
common problems in stochastic control, again without providing a convergence guarantee
for their proposed method. For MFGs, the picture is more clear. For instance, [14]
analyzes the convergence of both a DGM-type algorithm and a BSDE-type algorithm for
the master equation, which characterizes the value function for the MFG equilibrium.
Interestingly, the authors of [14] propose a deterministic deep backward scheme in place
of the more standard stochastic setting first introduced in [26]. The deep backward
master equation (DBME) algorithm in [14] instead relies on a key consistency relation
between the solution to the master equation and the measure that solves a Fokker—Planck
equation for the MFG system. By performing a time discretization of the Fokker—Planck

equation and solving it on each resulting interval using a neural network, the DBME

1.4 Main Results

algorithm can efficiently leverage the consistency relation from [14, Proposition 1] to
solve the master equation. Although we have access to a Fokker—Planck equation in
the MFCP, as described in Equation (1.14), the relationship between the value function
that solves the HJB equation in Equation (1.1) and the measure that solves the forward
equation in Equation (1.14) is not as clear as in the case of MFGs. Thus, establishing

the convergence of a DBME-type algorithm for MFCPs remains a topic of future work.

1.4 Main Results

We show that the convergence guarantee provided in [1] extends to the (first-order) HJB
equation (1.1), relying on the theory of viscosity solutions for HJB equations to obtain the
desired convergence. Importantly, our class of HJB equations does not fall into the class
of second-order nonlinear parabolic PDEs considered in [1], so we provide a different proof
technique. In order to leverage the theory of viscosity solutions in our proof technique,
we modify the loss functional used in [1] to approximate the L®-norm rather than the
L2-norm. Viscosity solutions are often referred to as L>-weak solutions, as they respect
convergence with respect to the uniform norm [32]. The work by [1] establishes the
uniform convergence of neural network approximators to the actual solution a family of
partial differential equation. However, this result is obtained by introducing additional
assumptions of uniform boundedness and equicontinuity on the neural networks, which
we can also bypass using L*°-loss. With this reformulation of the DGM loss, we first
prove an existence result by showing in Theorem 3.2.4 that a sequence of neural networks
taking the loss functional of the DGM to zero exists. With Theorem 3.3.2, we then
prove that for such a sequence of networks, the neural network approximators converge
uniformly to the true value function for the MFCP on [0, 7] x Sj.

To obtain this result, we utilize a standard argument from the theory of viscosity
solutions, relying on an appropriate definition of viscosity solutions to Equation (1.1) on
the simplex and a corresponding comparison principle. By establishing that a sequence
of neural network approximators are viscosity solutions to a sequence of perturbed HJB
equations and applying the comparison principle to two suitable upper and lower limits of
the neural network approximators, we can conclude that the sequence of neural network

approximators taking the DGM loss functional to zero must converge uniformly to the

10

1.4 Main Results

classical solution to Equation (1.1). The main steps in our proof are outlined as follows:

(1) First, in Theorem 3.2.4, we show that there exists a neural network ¢ that makes

the DGM loss (defined in Section 3.1) arbitrarily small.

(2) From this, in Corollary 3.2.5, we establish that there exists a sequence of neural
network approximators {¢"},en such that ¢" — V uniformly on [0,7] x Sy as

n — oo, where V' is the unique classical solution to Equation (1.1).

(3) Then, we handle the technical details of working with a PDE on the (d — 1)-
dimensional simplex S;. In particular, the interior of Sy is empty, so we instead
work on §d, the projection of the simplex onto R?~!. These technical details are
discussed in Proposition 3.3.1, and we work on §d for the remainder of the proof
in order to fully leverage the power of viscosity solutions. Throughout, we use hat
notation to denote mathematical objects that are defined on §d rather than on Sy.

For example, V is the version of V', defined on §d.

(4) Finally, we arrive at our main result in Theorem 3.3.2, which establishes that if
{@"}nen is a sequence of neural network approximators taking the DGM loss to

zero (which we know exists from Corollary 3.2.5), then ¢" — 1% uniformly on

[O, T] X §d~

(5) The proof of Theorem 3.3.2 relies on a comparison principle for viscosity solutions,
as presented in [33, Theorem 3.3|. In particular, we construct a viscosity subsolution
V and a viscosity supersolution V on [0, 7] x §d that satisfy V. < V by construction,
and V < V by the comparison principle. By the uniqueness result for viscosity
solutions to the HJB equation [2, Theorem 9], this implies that V = V = ‘7, and

the construction of V and V provides uniform convergence as a byproduct.

We note that although our proof technique is only applied to PDEs of the form presented
in Equation (1.1), the general approach is likely applicable to a broader class of HJB

equations that admit viscosity solutions.

11

1.5 Notation

1.5 Notation

As noted above, we define [d] := {1,...,d}. The (d — 1)-dimensional simplex Sy is given
by

d
Sy = {(ml,...,md)ERd:miZO, Zmizl}. (1.21)

On the simplex S,;, we define directional derivatives for a function ¢ : S; — R by

D' f(m) = (O, —m, (M) jeqa);

where derivatives are in the direction of e; — e; for the corresponding standard basis
vectors of R,
Unless otherwise specified, 2 will refer to a subset of R” (measurable, but not neces-

sarily open). As usual, LP(2) consists of the measurable functions on € such that

Il = ([1) "

where the integral above is taken with respect to the Lebesgue measure on R?, restricted
to Q. For p = oo, we instead take L*(2) to be the space of measurable functions on
) whose essential supremum is bounded. We say that a function is differentiable on 2
if it is differentiable on the interior of 2 and extends to a differentiable function on an
open neighborhood of R™ that contains . As is standard, C(f2) refers to the space of

continuous functions on €2, equipped with the uniform norm:

[/ lloo := sup [f ()]
€S

Below, when we refer to uniform convergence, we always refer to convergence in the above
norm.

We use the notation C''(2) to denote (continuously-differentiable) functions that have
Lipschitz-continuous first derivatives on Q. See [2] for a more thorough discussion of this
class of functions as they relate to the HJB equation in Equation (1.1). Other spaces
of functions that we refer to throughout include the space of continuously-differentiable

functions with & continuously-differentiable derivatives, denoted by C*(€2). Finally, we

12

1.6 Organization

define the standard norm on C*(£2) by

[1fllex (o) = max sup [D f(x)].

lal<m zeq

1.6 Organization

The remainder of this thesis is structured as follows. Section 2 introduces the relevant as-
sumptions placed upon the MFCP that ensure sufficient regularity of the value function.
In particular, Section 2.1 presents all assumptions that we place on the MFCP, Sec-
tion 2.2 discusses known existence, uniqueness, and convergence results for the MFCP,
and Section 2.3 contains detailed derivations of the HJB equations for the N-agent prob-
lem and the MFCP and N-agent problem. Section 3 presents our modified version of the
DGM algorithm for the HJB equation, the resulting convergence guarantees, and all cor-
responding proofs. Within, Section 3.1 presents the DGM algorithm along with several
technical details surrounding its implementation and efficiency, Section 3.2 provides nec-
essary background on the universal approximation power of neural networks, Section 3.3
contains our primary convergence results and the associated proofs, and Section 3.4 com-
pares our results to previously established convergence guarantees for the DGM. Finally,
Section 4 presents selected numerical results from a JAX implementation of the DGM in
Section 4.1 before concluding with a brief exploration of algorithmic modifications that

may improve the efficiency of the DGM in Section 4.2.

13

Chapter 2

Assumptions and Known Results for

the MFCP

2.1 Assumptions for the MFCP

We start by assuming the following, drawing upon the notation introduced in the pre-

ceding section.

Assumption A. The function F : [0,T] x [0, M]* x Sq — R, given by

F(t,d',...,a%m) = Z mif(t,i,a’,m)
i€[d]

is continuous and there exists a constant C' > 0, such that for anyt,s € [0,T], a € [0, M]¢,

and m,p € S¢,
|F(t,a,m) — F(s,a,p)| < C(|t — s| +|m —pl|).

Assumption B. For each i € [d], the running cost f is continuously differentiable in a,

Vof is Lipschitz continuous with respect to m, and there exists X\ > 0 such that
fti,0,m) > f(t,i,a,m) + (Vaf(t,i,a,m),b—a) + Alb— al®.

Assumption C. We have that:

14

2.2 Existence, Uniqueness, and Convergence Results for the MFCP

(C1) Defining G : Sqg — R by

G(m) = Z mig'(m),

€[d]
we have that F(-,a,-) € CH([0,T] x Sy4) and G € C1(Sy).

(C2) The function

[O,T] X [O,Oo)dxd X [nt(Sd) =) (t,w,m) — Z m f (t,i, (wz‘,j> 7m>
/i

is convez in (w,m).
(C3) G is convex in m.

Note that under Assumption (C), G is differentiable and hence Lipschitz continuous

on compact sets: for any m,p € Sy,
|G(m) — G(p)| < Clm —pl

for some C' > 0, which we can take to be the same constant as in Assumption (A). We
provide an example of an MFCP in Section 4 for which the running and terminal costs

satisfy all three of the above assumptions.

2.2 Existence, Uniqueness, and Convergence Results

for the MFCP

Under the above assumptions, Cecchin [2] derived a series of useful results for the MFCP.
We begin with a uniqueness result for solutions to the above HIJB equations, from |2,

Theorem 2.9].

Proposition 2.2.1. Let V' be the value function for the deterministic control problem in

(1.15). Then, if:

(1) Assumption (A) holds, V is the unique viscosity solution of Equation (1.1) on Sy

and V' is Lipschitz continuous in (t,m).

15

2.2 Existence, Uniqueness, and Convergence Results for the MFCP

(2) Assumptions (A) and (B) hold, there exists an optimal control to the deterministic
MFCP.

(3) Assumptions (A) — (C) hold, then V. € CH([0,T] x Sy) is the unique classical
solution of the HJB equation in Equation (1.1).

Although the above theorem is the most important result from [2] for our work,
Cecchin also presents several convergence results connecting the MFCP to the N-agent
optimization problem. In particular, we have, from [2, Theorem 2.10] the following result
concerning convergence of the value function V¥ for the N-agent optimization problem
in (1.2) to the value function V' for the MFCP. Note that this result only requires the

standard stochastic control assumptions from Assumption (A).

Proposition 2.2.2. Under Assumption (A), we have that

max |VN(t,m) — V(t, m)‘ <
(t,m)E[O,T]XSd

<
VN
for all N € N.

Next, [2, Theorem 2.11] contains a similar convergence result for the cost obtained by

the optimal control for the MFCP.
Proposition 2.2.3. Let ¢ > 0 and N € N. Then, under Assumption (A), if a:[0,T] —
A is an e-optimal control for the MFCP,

JV(a) < inf JN(aN) +

aNeAN

+ ¢,

Bl

where JV is the cost functional for the N-agent optimization problem in (1.3).

Finally, Cecchin also presents a propagation of chaos of result, describing the connec-
tion between the optimal trajectory of the N-agent optimization problem and the MFCP
in [2, Theorem 2.13].

Proposition 2.2.4. If Assumption (B) holds and V € CY1([0,T] x Sy), then

E

sup [u¥ —]| < <2
te[0,7 ‘ - NYY

16

2.3 Derivations of HJB Equations

where p is the process in (1.9) and p is the optimal trajectory of the MFCP, satisfying
(1.14).

At this point, we note that while Propositions 2.2.2, 2.2.3, and 2.2.4 are not directly
relevant to our main results in Section 3, they demonstrate that solving the MFCP
can reliably approximate solutions to the N-agent control problem, with quantitative
estimates for the rate of convergence between the two. Consequently, given an N-agent
optimization problem as in Section 1.1, one can translate the problem into an MFCP,
obtain an accurate solution for Equation (1.1) using the DGM, and by Proposition 2.2.2,
estimate the approximation error of the value function for the N-agent problem, which
solves Equation 1.8.

From there, a standard optimal control argument, as outlined in [34], will recover a
sequence of optimal controls for the N-agent optimization problem from the value function
for Equation 1.8, thereby solving the N-agent optimization problem. Critically, when
solving Equation (1.1) using the DGM, our convergence results ensure that the DGM
will produce a reliable approximation, with respect to the uniform norm on [0, 7] X Sy,

to the classical solution to Equation (1.1), assuming that such a solution exists.

2.3 Derivations of HJB Equations

In this section, we present the derivations of the HJB equations for both the N-agent
optimization problem and the MFCP, first introduced in Section 1. We begin with the
HJB equation in Proposition 1.1.1, corresponding to the standard N-agent optimization

problem.

Proof of Proposition 1.1.1. Recall the definition of the generator of a continuous-time
Markov chain: if ¢ : {1,...,d}¥ — R and T} ,0(x) := E[p(Xi11) | X; = x| denotes the
Feller semigroup of the process, then we define the infinitesimal generator of the process

by

Li\[ﬁgp(x> — I}g{]l Tt,hgp(x) B SO(X) ' (21)

We can now explicitly compute the limit in (2.1) given the dynamics in (1.2). In partic-

17

2.3 Derivations of HJB Equations

ular, we observe that

Tinp(x) = Elp(Xn) [Xe = x] = > > [Qui(hy Br(h, %),)b + o(h)] o([x ¥, 5]).

k=1 j#z)

Assuming that ¢ : {1,...,d} — R is bounded, the fact that o(h)/h — 0 as h | 0 now

implies that

T,
Eiv’ﬁgo(x) _ 1,%1 t,h@(x)

Mz

D Que(t, Bt), 1) [0(x 7, 4]) — ()]

1 j#ay

<Q$k,0 (tv Bk‘(t? X, M)J:f))7 Ak@(x»

N
k=

B
Il

WE

1

Z Q:ck 5]4! t X, Hy))aNAkQO(X»

1

ZIH T

From Assumption (A), we have that the transition rate); ; is continuous on [0, 7] X Ax Sy,
allowing us to pass the limit inside the transition rate above.

The next step is the key step that allows us to apply It6’s formula, or rather, Dynkin’s
formula [34]. In particular, recall that if (X;)icjo,r] is a Feller process (as is the case here)

and ﬁév’ﬁ @ is well-defined, then the process given by

t
MF = o(X,) — p(Xo) — / L34 (X)ds.
0

is a martingale adapted to the canonical filtration of the process (X¢)icjor); see [35,
Chapter 17], for instance. Now, if vV denotes the value function of the N-agent stochastic
control problem, we can now apply Dynkin’s formula (noting that (Mt”N)tE[O,T] is now a

martingale, even if (X;);co,71 may not be) to see that

N
N (t 4 h, Xopn) = 0N (4, Xy) + / (% + L{V’%N) (s,X,)ds.
t

Taking conditional expectations, we find that

N
E[oV (£ + b Xosn) | Xo = x] = 0¥ (£, %) + B [/ (%—t ; ci“%N) (5, X.)ds
t

18

2.3 Derivations of HJB Equations

Here, we remark that the above expression, obtained via [t0’s formula, may also contain
a local martingale that disappears upon taking expectations.

Now, for any control @', we observe that forall 0 <t <r < T,

oV (t,x) = inf JN(t,8,%)

BeAN
< JY(t,8',%)
1 T
=y B | [X s X s + X) | X = x
k=1 t
1 & T
=NZE[/ P X8, B, X)) + o (XE) | Xo = x
+%k 1E[/ f(s, XE Bi(s, X5, i yds Xt—x}
=E[JY(r.8,X,) | X; = x]
+ = ZE{/stk/Bkst),us)ds Xt—x}

by the Markov property and the tower property. Now, assume that the control 3’ is after
time r so that JV(r, 3, X,) = v™(r, X,). We then obtain, with r =t + h,

o (t, x) > E[UN(t + h, Xn) | Xy = %]

1 (2.3)

N V Fls, X5 BL(s, X5, 1)ds

Xt:X:|.

Applying the law of iterated expectation and plugging this inequality into the inequality
n (2.2), we see that

E

t+h 1 N v N
/ ﬁZf@,Xf,ﬂ,;(s,Xf),ufH(WMN" N) (s,X,)ds| > 0.
t

k=1

Dividing by h and taking the limit as h | 0 as in [34], we obtain via the mean value

19

2.3 Derivations of HJB Equations

theorem that

0> —M(t x) + | =L PN (¢, x) — iZ:f(t i, Be(t, %), 1y
> ot , t s N L s Lky PE\Yy y Mg
ouN 1 al .
= _W(tax) + N <_ Z<ka,o(tv 5k(tax7 p’:]:[))a NAkUN(t,X» o Zf(t7 xlﬁﬁk(t’x)’luiv)))
k=1 k=1

with equality when the optimal control 3* is chosen. As a result, we have that

oV
0= —W(t, X)
N N
+ sup (— (Qupo(t, Brlt, x, 11y)), NA®N (2, %)) — Zf(t,a:k,ﬁk(t,X),uiV)> :
BeAN k=1 k=1

Thus, by the preceding definition of the Hamiltonian, we therefore conclude that the

value function vV satisfies

oV 1 &
—W(EX) ty > " H (t, 1, NARN (2,x)) = 0.
P

Additionally, because the terminal cost is given by % Z,ivzl g(XT 14), the associated

terminal condition for the above system of ODEs must be
| N
UN(T7 ZL‘) = N Z g(xkh Mi{v)

k=1

The above derivation yields the HJB equation for the N-agent optimization problem.
Uniqueness and the stated regularity then follow from [2, Proposition 2.3].]

Next, we derive the HJB equation for reformulation of the N-agent problem, presented

in Proposition 1.1.2.

Proof of Proposition 1.1.2. The generator of this Markov chain is instead given by

1
LENo(m) = N Y7 miQuy(t an(td,m),m) o(m + <(6; = 6) —v(m) |, (2.4)
i,j€[d]

but the HJB equation for the new value function V¥ (¢,m) can be derived precisely as

above. Consequently, the same reasoning as in the proof of Proposition 1.1.1 (albeit with

20

2.3 Derivations of HJB Equations

a different generator) yields the HJB equation

N
0= —aL(t, m) + sup | —LY*NVN(t,m) — Z m; f(t,i,a',m)
ot an€A icld]
ovN

=~ (tom) + " myH' (8, m, DYV (¢ m))
i€[d]

in terms of the Hamiltonian defined in [2]. Finally, we have the following terminal con-

dition, coming from the terminal cost term in (1.10):
VN(T,m) = Z mig'(m).

Again, uniqueness and the stated regularity are shown in [2, Proposition 2.6].]

Finally, it remains to derive the HJB equation for the MFCP itself, as stated in

Proposition 2.2.1.

Proof. In Section 1, we reduced the MFCP to a deterministic control problem. Thus, we
may apply the dynamic programming principle (DPP) as usual. Below, we also use the
fact that, by assumption, A = [0, M| @ Now, if the value function of the MFCP problem

is given by

V(t,p) = inf J(t, o p),

then the DPP (as stated and derived for the deterministic control problem in [36]) states
that

t+h
Vitn) = int | [3 flosial(s) pouids + ViE+ hpuen)
t ie[d]
Above, the control « is such that « : [0,7] — A. Subtracting V (¢, p;) from both sides
and dividing by h, we obtain

1 t+h . 4 V(t+h B y
0 = inf E/ Z f(SJ,Oél(S),us),u;ds + (+ 7:ut+}:«) V(7/1’15)
t

acA
ie[d]

21

2.3 Derivations of HJB Equations

Taking the limit as h | 0 then yields

| | v d
0= inf Z f(ta t,a, ,ut):u’t + E(ta Mt) + va(tu :ut> ’ Eﬂt(t7 a’)

a€l0,M]? ield]

= %—‘;(t,ut ae% > pif(tisa,) Z 111Qij (£, A’ 1) O,V (, p14) |
i€[d] ijeld]
where in the last step, we utilize the dynamics of the system from above and recall that on
the interior of the simplex, only derivatives in the directions (e; — ei)i,je[[dﬂ are considered
in [2]. This last step is justified in [2, Section 2|, where the simplex is represented as
a (d — 1)-dimensional submanifold of R? via the obvious local chart. Rearranging and

notationally replacing u; with m, we obtain the HJB equation

ov .
——(t,m)+ sup Z m;f(t,i,a,m) Z miQi;(t, a’,m)0p, —m,V(t,m) | =0.
ot a€l0,M]? ic[d] -
i i,5€[d]
Finally, using more notation from [2], we write DV (t,m) = Op,—m,V (t,m) so that the

we can write the second term above in terms of the relevant pre-Hamiltonian:

> mi (—(Qialt.a,m), DV (t,m)) = f(t,i,a,m)) = = > mif (£, a,m)

ie[d] i€[d]
- Z szz] (t> aia m)amj—miv(t> m)
i,j€[d]

In turn, we arrive at the final HJB equation for the MFCP, given by

oV

- (tm) + > miHi(t,m, D'V (t,m)) =0,

i€[d]

from the definition of the Hamiltonian associated with the above pre-Hamiltonian. As
before, the associated boundary condition comes directly from the terminal cost of the

problem, and is given by

= Z mg'(m

i€[d]

This concludes the derivation of the HJB equation for the MFCP. We obtain uniqueness

22

2.3 Derivations of HJB Equations

and the regularity of V' from Proposition 2.2.1.

23

Chapter 3

Convergence of the DGM

In this section, we present our modified DGM algorithm to solve Equation (1.1) and
the corresponding convergence proof. We begin by presenting our version of the DGM
algorithm in Section 3.1. Next, in Section 3.2, we describe the relevant results from
universal approximation theory in addition to proving that the DGM can approximate
the solution to Equation (1.1) arbitrarily well in Theorem 3.2.4. In Section 3.3, we present
our main convergence results in Theorem 3.3.2. Finally, in Section 3.4, we describe the
difficulties in establishing convergence for the algorithm with L2-loss and analyze in more
detail why the proof technique in [1] is invalid for Equation (1.1). We employ the following

outline to obtain our existence and convergence results:

(1) By an appropriate version of the universal approximation theorem, we can arbi-
trarily approximate V' € C'([0,T] x Sy) with neural network approximators; see
Proposition 3.2.1. Specifically, there exists a sequence of neural network approxi-
mators {¢(t,m;0")},en such that the DGM loss applied to the sequence converges

to zero as n — oo; see Theorem 3.2.4.

(2) If the DGM loss goes to zero along a sequence of neural network approximators
{o(t,m;0™) }nen, then o(-,-;0") — V(-,-) uniformly on [0,7] x Sy see Theo-
rem 3.3.2.

Throughout this section, we utilize the following operator, defined for ¢ € C1*([0, T x Sy):

LG)(t,m) == —0d(t,m) + > miH'(t,m, D'¢(t,m)). (3.1)

€[d]

24

3.1 DGM Algorithm

Note that the first line in Equation (1.1) can be written as L[V](t, m) = 0.

3.1 DGM Algorithm

In this section, we present a modification of the DGM algorithm, first proposed by [1], in
the context of the HJB equation for the MFCP. The DGM aims to efficiently approximate
a solution to the above equation using a deep learning-based approach. Specifically, the
method learns model parameters § € RY, where P depends on the dimension d of the
simplex Sy, the number of layers in the neural network in use, and the number of nodes in
each layer of the neural network. The DGM learns the model parameters § by minimizing

an objective functional, referred to as the DGM loss, and given by

L(9) = (t,m)rerﬁ%wd \Lp(-, 5 0)](t,m)| + max lo(T,m; 0) — ngﬂ mg'((3.2)
Occasionally, we refer to this loss as the L>-loss. The maxima over [0,7] x Sy and Sy
are approximated by sampling, as demonstrated in the following algorithm. As with the
original DGM algorithm with L?-loss [1], we utilize stochastic gradient descent (SGD)
to find the parameter # € R” that minimizes the above loss. Note that in the following
algorithm, the architecture of the neural network is fixed, and only the parameter 6
is updated by SGD. As a proxy for the true loss functional, given a set of K samples
9D, mW) pWY, = {(#V pU)j=1,...,K}C[0,T] x Sy x Sy, we define

G((tY, m(j),p(j))jzl,...,x, 6) := j:rﬁl?.XK IL[o(-, -; 9)](t(j), mW)|

(3.3)

+ max (T, pV)= pgip
i€[d]

In practice, the performance of the following algorithm may vary depending on the sample
size K at each step; see the discussion below. Additionally, the learning rate schedule
o™ may determine the convergence rate of the algorithm as before. In most cases, using
an optimizer such as AdaGrad or Adam will help speed up convergence; see [37] for an
overview of best practices when it comes to efficiently implementing algorithms such as
the DGM. Finally, instead of using a tolerance § € (0, 1) to determine the convergence of

the algorithm, one may instead specify a fixed number of SGD iterations to carry out.

25

3.1 DGM Algorithm

Algorithm 1 Uniform DGM

Initialize parameters () € R”

Initialize tolerance ¢ € (0, 1)

n <+ 0

Uniformly sample (t9), m) pU) 1. K€ [0 T| X Sq X Sq

30ty

while G((t© m<) pl >) L.) > 6

Sample(m() p()j=1...x €0,]><Sd
9(n+1)<_9 ng((t]), @)))j " 7K,9()
n<n+1

end while

Although the DGM algorithm with L2-loss as defined in [1], seems to work quite
well in practice (as we demonstrate later in Section 4), the structure of the PDE in
Equation (1.1) prohibits us from using the same argument as [1] to prove convergence
of the DGM algorithm with L2-loss. Instead, by slightly changing the loss function to
the L*-loss, given in (3.2), which we use to train the neural network approximation
in the DGM algorithm, we can prove the convergence of our modified DGM algorithm
to the unique value function of the MFCP. By utilizing the above loss functional that
approximates the uniform norm of the PDE and terminal condition rather than the
squared error of the PDE and the terminal condition, we can leverage the theory of
viscosity solutions for first-order HJB equations from [33] in our convergence proof.

In practice, one may compute the L>-loss in Algorithm 1 using a smooth maximum
that approximates a maximum, but remains differentiable. For instance, a widely-used

smooth maximum in the practice of machine learning is log—sum—ezp, given by

flz,...,x,) :==log (Z exp(a:i))

Because

exp (lmax xl) Zexp x;) < nexp(max xz)

=1,...,n i=1,.
=1

we obtain the obvious bound

max{zi,...,z,} < log (Z exp(:cﬂ) < max{zi,...,z,} + logn,

i=1
with a strict inequality on the right-hand side unless z; = ... = z,,. For previous work

26

3.1 DGM Algorithm

involving stochastic gradient descent applied to a maximized loss function and insights
into its robustness, refer to [38, 39]. Empirically, we find that JAX’s built-in subgradient
calculus is sufficient to implement Algorithm 1 without utilizing a smooth maximum [40].

As noted above, we approximate that maxima over [0, 7] x Sy and Sy respectively by
uniformly sampling K points in each region. This incurs some error between the approx-
imate quantities in Equation (3.3) and their counterparts in Equation (3.2). We quantify
the error asymptotically in the number of samples K via the following proposition, based

on the analogous result for numerically solving the master equation in [14, Lemma 1].

Proposition 3.1.1. Assume that for any 0 € RY, the corresponding neural network
approximator ¢(-, -;0) is Lipschitz continuous with Lipschitz derivatives, and all Lipschitz

constants are uniformly bounded by some C' > 0. Then,
E|L(6) — G((t9,mY, p9)),_y x,0)| < CuF=/),

where L(0) is the true DGM loss from Equation (3.2), G((#9), mW) pU)),_; k. 0) is the
sampled DGM loss for K uniform samples on [0,T] x Sy x Sy from Equation (3.3), and
Cy > 0 is a constant that depends on the class of neural networks used in Algorithm 1

and the dimension d.

Proof. In the following proof, let

(t*,m*) € argmax |L[p(-,-;0)](t,m)|
(t,m)€[0,T]x Sy

and

m* € argmax |p(T, m;6) — Z mig'(m)| .
meSa ic[d]

Note that because ¢(-,-;6) € C*([0,T] x Sy), both of the above maximizers are obtained

on the compact set [0, 7] x Sy. Similarly, we denote the empirical maximizers by

J1 € argmax | L[p(-, - 9)](t(j),m(j))\
j=1,.,K

27

3.1 DGM Algorithm

and

J2 € argmax o(T ,p) szj) : (]
€[d]

L(O) = |L[p(, 5 0)](t,m")| + |@(T,p"0) = > paig' (0"

i€]d]

and

G((t(j),m(j),p(j))jzl 77777 K,0) = |£[¢(,7.;g)](t(j1) (1))| + | ij2) 0) Zp(yz) i (32

€[d]
Now, define
Jmin1 1= argmln {|t — t*|} , (3.4)
..... K
Jming2 1= argmlfr(l{Hm m*Hg} , (3.5)
Jnins = argmllr(l{Hp —p*ll2} (3.6)

.....

allowing us to describe the sampled points the sampled point closest to the true maximizer

(t*,m*, p*). Now, we evidently have that

0< L(0) — G((tV, m(j)jp(j))jzl x,0) < L(B) — G(tUmin) g limin) pUimin) @),

,,,,,

Now, we leverage the uniform Lipschitz continuity of ¢(-,-; 6), as well as Assumption 2.1,

to obtain a Lipschitz bound of the form

|L(6) — G((t(j), 77@(1')’]0(3')%:1
S |L<9) _ G(t(jmin,l)’ m(jmin,Z)’p(jmin,B)’ 0)| (37)

< C(lt(jmin,l) _ t*\ + Hm(jmin,2) _ m*HZ + Hp(jmin,g) _ p*“2>7

where C' depends on the Lipschitz constants of the Hamiltonian H (as discussed in

Lemma 3.2.3 below, Assumption (A) ensures that H is Lipschitz), the terminal con-

28

3.1 DGM Algorithm

dition GG, and the uniform Lipschitz bound on neural network approximators (and their
derivatives) introduced in the assumptions of the proposition. Indeed, we observe that

by the reverse triangle inequality,

Lo, - O)](E, m*)| — | Lo (-, -5 0)] (£min1) g limin2)]
< ’E[@(.’ : 9)](t*7 m*) o E[go(-, . 9)](t(jmin,1)’ m(jmin,2))’

< C([t = tUmin)| 4 |Im* — m(jmm,g))HQ)
In the last line, we use the fact that

E[Qp(-, S 0)](t7 m) = _at(p(t? m; 0) + Z miHi(t’ m, Digp(t, m; 0))
i€[d]
is Lipschitz continuous with Lipschitz constant C' (taking C' > 0 larger if necessary),
as it is simply the sum and composition of Lipschitz functions under our assumptions.

Repeating the exact same reasoning on the terminal cost term, which is of the form

p @(T,p;0) = Y pig'(p)
ie[d]
and is therefore also Lipschitz continuous with constant C' > 0, we obtain Equation (3.7).
Consequently, we can bound the expected value of each of the three terms in Equa-
tion (3.7), with the expectation taken with respect to a uniformly-random sample of K
points from [0,7] x Sg X Sy. For the first term, observe that by the definition of jy, in
Equation (3.4) above, we have that
E|tUmin1) —] = { min [t —t*|] <E { min t(j)} : (3.8)
j=1,...K j=1,...K
The inequality in the preceding display follows because tU) € [0, T'] are sampled uniformly,
so for any j € [K] and § € (0, 1), we see that

P([tV) —*| > 0T) <1—-25 <1 -6 =P(tY > §T).

29

3.1 DGM Algorithm

In turn,
K K
P([t0mint) — 7 < 6T) =1 = [[P()tV) — #*] > 6T) > 1 = [[P(tY) > 6T)
j=1 j=1
=P (min tU) < (5T)
j=1,..K

for all § € (0,1). It then follows that the non-negative random variable min;—;
stochastically dominates [tUmin1) —¢*| in which case an argument from elementary prob-

ability theory implies the inequality in Equation (3.8) above. Now, because

, T -\ %
IP’(min t(7)§t>:1—(1——)
j=1,...,.K T

.....

-5

This allows us to directly compute

T K-1 1
, Kt (T —t
E[min t(J)} :/ — (—) dt:TK/ (1—s)s"1ds
j=1,...K o T T 0
T

1+

N.

With this bound in mind, we turn towards bounding the last two terms in Equa-
tion (3.7) above. Because both mY) and p¥) are sampled uniformly from the simplex Sy,
it suffices to bound the second term, as we can then bound the last term analogously.
The following argument is identical to that of [14, Lemma 1], but we include it here for

the sake of completeness. First, observe that for any m € S;, we can write

md=1— Z m;.

i€ld—1]

30

3.1 DGM Algorithm

As a result, it follows that

||m(jmin,2) _ m*”% — Z(mg‘jminﬁ) _ m:Lk)Q

)

€[d]
2
— Z (mgjmin,Q) _m:)2+ 1— Z m’gjminj) 14 Z m:(
ield=1] ic[d—1] ic[d—1]
2
— Z (mgjmin,Q) . m:)? + Z (mgjmin,Q) o m:)
’ie[[d—l]] ieﬂd—lﬂ

In turn, by the Cauchy—Schwarz, inequality, we can bound the preceding quantity above

by

Z (mz(jmin,z) . m:)Z + (d . 1) Z (ml(jminz) - m:)2 _ dH,ﬁ-(m(jminﬂ) _ m:)”; <3.9)
iefd—-1] i€[d—1]
where # : R? — R% ! is the projection of S; onto R%!; see Section 3.3 below. Now,
observe that
Bl —)] = || min, 3 = m)l

<E | win, [
=1, K

< i = (0 (F))
E |, min, [7(m)]]
To obtain the above bound, note that the case in which 7(m*) = 0 provides an upper
bound, by analogous reasoning as in Equation (3.8). Additionally, we apply the fact that
for any v € R4 |jv|ls < ||v]|:. Now, because m") is sampled uniformly from Sy, [41,
Remark 1.3] implies that if X3,..., Xy ~ Exp(1), then
: X,
no - X
Zze[[d]} Xy
In other words, to sample a point uniformly on the simplex Sy, one can instead sample d

i.i.d. exponential random variables and normalize by their sum to obtain each coordinate

31

3.1 DGM Algorithm

of a uniformly sampled point on Sy. In turn, we see that

A A ne.¢
N m(g)”1 _ Z mgj) _ Zzz:e[[d 1}]X' Nﬁ(d— 171)7
ic[d—1] iefd] =

as the sum of exponential random variables satisfies

ZXNF —1,1), ZXNFdl

ie[d—1] ie[d]

respectively, and the ratio of two gamma distributions, distributed as I'(ay, 1) and I'(az, 1)
respectively, follows a beta distribution, distributed as [(as, 042). From this characteri-
expectation of the minimum of K i.i.d. random variables, each distributed as 3(d —1,1).
Fortunately, the cumulative distribution function of such a random variable has a rela-

tively simple description:

K
: @, < N, <
P (amin, lr(m <) =1 T[1 = Bl < o)

using the well-known cumulative distribution of a random variable distributed as §(d —

1,1). From this, and the fact that ||7(m)||; € [0, 1], we obtain

= m 81/(d_1)_1(1 — S)KdS,

taking s = 24!

in the last equality. The integrand in the last line above, however,
is the (unnormalized) probability density function of a random variable distributed as

B(1/(d—1), K +1). The corresponding normalization is well-known, and it is given by

Y d1)-1 k., D(/(d—=1)T(K+1)
/08/() dS_F(K+1+1/(d—1))’

32

3.1 DGM Algorithm

where I' is the standard Gamma function. Taking

= w, (3.10)

we utilize the bound on the ratio of Gamma functions, first presented in [42] and based
on the standard Stirling approximation for the Gamma function, to see that

20d—1)—1

1
V(@-1-1(1 _ 3K gg — -1/ |1 _
/0 ° (1=s)"ds = Ca oK (d— 1)

+ O(K—Q)] .
Returning to Equation (3.9), we see that

Efllm0e2) —] < VAE | min, 7)1

7=1,...,

< VAC K@D {1 - —2;(; d1:>1 " O(Kﬂ |

Repeating the exact same reasoning on the third term in Equation (3.7), we similarly

obtain
- 2(d—-1) -1
E Umin2) _ %] < A/dC, K—Y@d=1) |1 — K2
Hiptm= —] < VG, SR FOUs)
Finally, we have that
, T
E t(]min,l) _ t* —
| | 1+ K

from Equation (3.8) above. Substituting all three quantities into Equation (3.7) yields

an estimate of the form

IL(9) — G((tD,m,), i, 0)] < VACC,O(K/4D), (3.11)

where C' depends on the Lipschitz bound on the class of neural networks used in Al-
gorithm 1 and Cj is given in BEquation (3.10). Taking Cy := v/dCC, completes the
proof. n

As a result of the above error bound, by taking the sample size K sufficiently large,

we can approximate the true loss in Equation (3.2) via the empirical, sampled loss in

33

3.2 Universal Approximation Via Neural Networks

Equation (3.3). Consequently, if the sampled loss converges to zero, then so must the
true loss, with the gap between the two described by the error term in Proposition 3.1.1.
We stress that the above bound is asymptotic. Rearranging the bound reveals that if we
wish to approximate the true DGM loss by the sampled loss, up to an error of € > 0,
then we require K = O (slfd) samples. Disappointingly, this is still exponential in the
dimension d of the HJB equation in question. However, the above asymptotic bound does
not necessarily mean that an exponentially large number of samples will be necessary to
accurately approximate the DGM loss. In practice, the experiments in Section 4 indi-
cate that the upper bound above is likely pessimistic, as taking K ~ 10000 is typically
sufficient to obtain arbitrarily small loss after running SGD, measured by the average
sampled loss over many resamples of K points on [0, T] x Sy x Sy. Empirically, this phe-
nomenon appears to hold up to at least d = 200. Furthermore, we explore applications of
adversarial training, a technique that is specifically tailored towards accurately approx-
imating L>-loss by biasing the algorithm towards samples that result in large L*°-loss,

in Section 4.2.

3.2 Universal Approximation Via Neural Networks

In this section, we provide a brief, non-comprehensive review of universal approximation
theorems, with the goal of summarizing results relevant to the DGM. By a “two-layer”
feedforward neural network, we refer to a neural network with one input layer and one
hidden layer as defined by (3.12), taken with L = 1. Although such networks are relatively
simple compared modern deep neural networks, their universal approximation power is
sufficient for the purposes of the convergence result in this section. Theorem 3.2.1 is
just one of many results that describe the approximation power of this class of neural
networks; see [43] for a similar survey, albeit with a focus on implementation.

Universal approximation results relevant to this paper fall broadly into two cate-
gories: approximations in L” spaces for p < oo (or in WHkP spaces if the approximation
of derivatives is also desired) and approximations in C* for k¥ > 0. Modern universal ap-
proximation results largely stem from those established by Hornik, Stinchcombe, White,
and Cybenko in the early 1990s. In particular, the former three authors first showed that

neural networks with (possibly discontinuous) “squashing function” activations are uni-

34

3.2 Universal Approximation Via Neural Networks

formly dense on compact sets in C(R), with respect to the uniform norm [44]. Cybenko
then showed that neural networks with sigmoidal activations share the same approxima-
tion power [45]. Hornik, Stinchombe, and White then extended the result of Cybenko to
neural networks with non-sigmoidal (indeed, bounded and nonconstant) activations, also
providing estimates of the derivatives of an unknown function f € W*?(Q) for k > 1 and
p > 1, with Q C R” compact [46]. Theorem 3.2.1 is due [47], who subsequently showed
that functions with £ continuous derivatives can be uniformly approximated on compact
sets in C*-norm in addition to the standard norm on W*? [47]. Out of the universal
approximation theorems shown in the early 1990s, Hornik’s result is the most general.
However, his proof, relying on the Hahn—Banach theorem, is not constructive and does
not extend to neural networks with bounded weights.

Conversely, Stinchcombe and White showed that continuous functions can be approx-
imated, in uniform norm, by neural networks with bounded weights using an argument
based on the Stone-Weierstrass theorem [48]. In Section 3.4, we discuss networks with
bounded weights in more detail, as well as the impact that bounding weights may have on
approximation power. Indeed, in order to establish equicontinuity as in Theorem 3.4.3,
we require approximation by a sequence of neural networks with bounded, summable
weights. In the case of bounded neural networks, however, approximation of a function
and its derivatives does not seem to be covered by the current literature.

Although the vast majority of results concerning universal approximation by feedfor-
ward neural networks were stated and proved in the early 1990s, several authors have
made recent attempts to extend classical results to more complicated architectures, more
general convergence guarantees, and provide explicit constructions of universal approx-
imators. For instance, Mhaskar and Micchelli show in [49] that functions and their
derivatives can be uniformly approximated in LP([—1,1]?) for p > 1 using a constructive,
Fourier-analytic approach via approximation by periodic functions.

Additionally, there has been recent interest in exploring the approximation power
of neural networks with specific activation functions such as hyperbolic tangent neural
networks. For example, [50] considers the approximation power of tanh neural networks
in the standard norm on W*?(Q) for a compact domain Q C R? deducing asymptotic
bounds on the weights of the neural network and much more explicit bounds on the

approximation power of a network with a fixed number of hidden units. In a similar vein,

35

3.2 Universal Approximation Via Neural Networks

[51] derive promising results for networks with piecewise quadratic activations (specifically
ReQU neural networks), demonstrating that ReQU networks with bounded weights can
approximate functions and their derivatives in Holder norms. In particular, [51] shows
that if f € C?%([0,1]%) for a € (0,1], then for any ¢ > 0, there exists a deep neural
network ¢y with weights in [—1,1] such that ||f — ¢y||c2.a(o1je) < €. This construction,
however, is not currently considered in the proof of Theorem 3.2.4, as we limit ourselves
to smooth activation functions here.

More concretely, we utilize the classical universal approximation result of Hornik [47]
to establish that the uniform DGM loss can be made arbitrarily small by neural network
approximators in Theorem 3.2.4. Then, we lay the foundations for our main convergence
result via Corollary 3.2.5, which provides a reformulation of the result in Theorem 3.2.4
that is better suited for the language of viscosity solutions.

Although all universal approximation results in [47] hold for two-layer neural networks
(i.e., a single hidden layer), we allow neural networks with multiple layers, including
deep neural networks with modern architectures. In general, a network with L layers,

maximum width n, and a common activation function o takes the form
o(t,m;0) :=c(Wr...c(Wim+at+c)...+cp), (3.12)

where the activation function o is applied elementwise. Above, W; are weight matrices, ¢;
are bias vectors, and « is a scalar weight. In turn, the parameters of each neural network
are of the form 6 = (Wy,..., Wy, c1,...,cp,) € RY (upon flattening all weight matrices
into vectors), where P depends on the maximum width of the network, the depth L of
the network, and the dimension d of the simplex Sy. In turn, we take @Eli)l(a) to be the
class of neural networks with parameters 6 of dimension at most P (but any number of

layers L), from which we define

P
Cani(o) = | ¢ (o).
P=1
This is a slight departure from the notation of [47], but all the relevant universal approx-
imation results therein still hold in this more general context. With the above notation
in mind, we can apply the universal approximation theorem [47, Theorem 3], stated as

follows:

36

3.2 Universal Approximation Via Neural Networks

Proposition 3.2.1. If 0 € C"™(R) is nonconstant and bounded, then €41 is uniformly
m-dense on compact sets in C™(R¥L). In particular, for all h € C™(R*Y), all compact

subsets K C R and any € > 0, there exists 1 = (h, K,e) € €441 such that ||h —

¢||cm(K) < €.

In the implementation in Section 4, we take o(y) = tanh(y), a typical choice of
activation function that is smooth, nonconstant, and bounded, and therefore satisfies
all the criteria of Proposition 3.2.1. Note also that with this choice of o, any element
of €411(0) is smooth (as a linear combination of smooth functions), ensuring that any
¢ € €441(0) has Lipschitz-continuous first derivative. See [50] for further justification of

this choice of activation function in terms of the approximation guarantees that it brings.

Remark 3.2.2. In Proposition 3.1.1, we required that the neural networks used to ap-
proximate the unique classical solution V' € CH([0,7] x S4) to Equation (1.1) were
uniformly Lipschitz continuous with uniformly Lipschitz derivatives. Because the value
function V'€ CH1([0,T] x Sy) is itself Lipschitz continuous with Lipschitz derivative, this
is reasonable assumption to impose, and we do not lose any of the approximation power
provided by Proposition 3.2.1 above. Indeed, recent work shows that neural networks
often possess the Lipschitz continuity properties assumed in Proposition 3.1.1 after train-
ing, and imposing such Lipschitz constraints on neural networks improves generalization

performance; see [52, 53, 54].

With the above background in mind, we move towards approximating solutions to the
HJB equation for the MFCP (1.1) using the DGM. Through Assumptions (A) - (C), we
clarify several useful properties for proving convergence of the DGM to the solution of
the HJB equation.

First, recall that by Proposition 2.2.1, Equation (1.1) admits a unique classical so-
lution V' € CH([0,T] x S;). Second, under Assumption (A), the PDE-Hamiltonian in
Equation (1.1) is Lipschitz continuous. In particular, H(t,m,p) = Ziem mH(t,m,p),

is Lipschitz continuous so that for any (t1,m™, p1), (ta,m®,py) € [0,T] x Sq x Sq, we

37

3.2 Universal Approximation Via Neural Networks

have that
> —mP)(H (1, m), pr) = H (12, m®, o)
€[d]
< k||t = to,m™ —m®, py —py)l2
< w([[tr = talla + [[m™ = m® |z + [[pr = p2]l2)
for some constant £ > 0, where || - |2 denotes the Euclidean norm. In fact, we only need

the following lemma, which also follows from Assumption (A).

Lemma 3.2.3. For each i € [d] and fized (t,m) € [0,T] x Sy, the map p — H'(t, m, p)
1s Lipschitz continuous with a common Lipschitz constant C' > 0 that does not depend on

1.

Proof. By the definition of the Hamiltonian provided in (1.18), we have that

H'(t,m,p) — H'(t,m,p) < sup - Z arpr — f(t,1,a,m)
ar€[0,M], ke[d]\{i} ke[d]\{i}

— sup N Z arpy, — [(1,4, a,m)
ar€0,M], ke[d]\{i} ke[d]\{i}

_ sup Z ak(pk - p;)
ar€[0,M], keld] |, a1}

<MY (ps— 1)

ke[d]

< VaM|p —p'l|s,

where M is a bound on transition rates introduced in Section 2. In the last line above,

we use the fact that for any v € R% ||v|; < V/d|[v||o. Switching the roles of p and p/
above and taking C' = v/dM completes the proof. O

We show below that by utilizing the uniform error, given in Equation (3.2) we can
obtain the desired convergence result. With the ultimate goal of showing that a neural
network can approximate the value function V(¢t,m) on [0,7] x S; arbitrarily well in

the uniform norm by taking the number of neurons in the network sufficiently large, we

38

3.2 Universal Approximation Via Neural Networks

first show the following existence result. This result in fact holds for both the our DGM
loss functional and the DGM with L?-loss, as shown in Section 3.4. In particular, the
following theorem establishes the existence of a sequence of neural networks that makes

the DGM loss arbitrarily small.

Theorem 3.2.4. Let 0 € CY(R) be bounded and nonconstant. For every ¢ > 0, there
exists a constant f((d, T,C) > 0, where d is the dimension of the simplex Sy, T is the
finite time horizon of the MFCP, and C' s the Lipschitz constant of the PDE-Hamiltonian
in Equation (1.1), such that for some ¢ = (-, -;0) € €qy1(0), the DGM loss functional
in Equation (3.2) satisfies L(0) < Ke.

Proof. Note that Qp :=[0,T] x Sy is a compact set in R4"L. Thus, by Proposition 3.2.1
above, we know that for the unique solution V € C"'(Qr) to Equation (1.1) and any

e > 0, there exists ¢ € €4,1(0) such that

€ > sup |V(t7 m) - So(ta m; 0)| + sSup |8tv(t7 m) - at(p(t7 m; 0)|
(t,m)eQr (t,m)eQr

(3.13)
+ sup |V, V(t,m)— Vn,e(t,m;0)|

(t,m)EQT
For such ¢ € €;,1(0), the Lipschitz continuity of the PDE-Hamiltonian in Equation (1.1),
due to Lemma 3.2.3, yields

> miH'(t,m, D'o(t,m;0)) = > m;H'(t,m, D'V (t,m))
ie[d] i€[d]

<C Y |D(t,m;0) — D'V (t,m)],
i€[d]
where C' is the Lipschitz constant of the PDE-Hamiltonian. Above, we use the fact that
Im;| < 1 for any m € S;. Next, by denoting the standard basis of R? by {e;}iefq, we
observe that for each i € [d] and any (t,m) € Qr,

|Dp(t,m; 0) — D'V (t,m)]* = |(Vimp(t,m;0) = V,,V(t,m)) - (e — ei)|?

DN | —
=

1

J

(3.14)

< [VaV(t,m) = Vip(t, m; 0) le; — il

DN | —
M-

j=1

< d|V,V(t,m) — Vio(t,m; 0) 2,

39

3.2 Universal Approximation Via Neural Networks

applying the Cauchy-Schwarz inequality in the second line above. Putting both bounds

together, we obtain

Z mH'(t, m, D'o(t,m;0)) — Z m;H'(t,m, D'V (t, m))
i€[d] ield] (3.15)

< Cd* 2|V, V(t,m) — Vop(t,m; 0)].

Now, let K = Cd*? > 0. We conclude by noting that the value function V satis-
fies L[V](t,m) = 0 for all (t,m) € Qr (in addition to the terminal condition of Equa-

tion (1.1)), which allows us to conclude that for ¢ = (-, -;0),

L(#) = max [L[p](t,m)| + max |p(T,m;0) — Z mig'(

t,m)€eS) meS,
(t;m)&2r ¢ i€[d]

= max |Llg](t,m) — LV](t,m)| + max [o(T,m; 0) — V(T m)]

(t,m)eQr

< max |m;H'(t,m, D'o(t,m;0)) — Z m;H'(t,m, D'V (t,m))
(t,m)GQT Zeﬂdﬂ

+@%gJ& (t,m) — Opp(t, m; 0)|

+ max |p(T,m;0) — V(T,m)|

meSy

< Ke

by applying the approximation result from (3.13) and taking K > 0 larger if necessary.
Note that the constant K now depends on d,C, and T as claimed. O

The following corollary, which also relates to the existence of an approximating se-
quence of neural networks, utilizes the same universal approximation theorem as The-
orem 3.2.4. In particular, we can obtain a sequence of neural networks that satisfies a
corresponding sequence of PDEs, with a measurable error term that uniformly converges

to zero.

Corollary 3.2.5. There exists a sequence of parameters {0"},en, such that ™ — V

uniformly as n — oo, where V' is the unique classical solution to Equation (1.1), and

40

3.2 Universal Approximation Via Neural Networks

©"(t,m) := p(t,m;0"). Given such @™, we define e" : [0,T] x S¢ — R as follows:

e"(t,m) := L[¢"](t,m), te[0,7),

n n ; 3.16
e"(T,m) = ¢ (T,m)—Zm,-g (m). (3.16)
Then, ||e"|| — 0 as n — oo, noting that each €™ depends on the neural network param-

eter ™.

Proof. From Proposition 3.2.1, we know that there exists a sequence of neural networks
{p" ben C €qy1(0) € CHY([0,T) x Sy), parametrized by a set of parameters {6"},cn,
such that (3.13) holds for ¢ = n~!. Thus, it immediately follows that ||¢" — Vs — 0
as n — 00, yielding a sequence ¢" of neural networks parametrized by 6" that converges
uniformly to V', the classical solution to Equation (1.1). By construction, ¢" satisfies the
PDE in (3.16). Furthermore, because each e : [0,7] x S; — R is continuous on both
[0,7) x Sy and {T'} x Sy, it is evidently measurable.

Finally, to see that ||e"||.c — 0 as n — 00, we reuse many of the estimates from the

proof of Theorem 3.2.4. In particular, we can write

e"(t,m) = —0p"(t,m) + > miH'(t,m, D'¢"(t,m))
i€[d]

=V (t,m) — 0" (t,m) + > my [H'(t, m, D'¢"(t,m)) — H'(t,m, D'V (t,m))] ,
ie[d]
for (t,m) € [0,T) x Sy, using the fact that V' solves Equation (1.1). By the fact that

m € Sy and the Lipschitz continuity of H' for each i € [d]], we again have that

> mg [H(t,m, D'¢™(t,m)) — H'(t,m, D'V (t,m))]| < C > |D'¢"(t,m) — D'V (t,m)]
ie[d] i€[d]

< 2dCIV,V(t,m) — V" (t,m)|.
Thus, we have that for all (¢,m) € [0,T") x Sy

1
le"(t,m)| < 2dC|V,,V(t,m) — V" (t,m)| + |0,V (t,m) — Op"(t,m)| < % + o

41

3.3 Uniform Convergence of DGM Approximators

by the construction of ¢" from (3.13). Similarly, at the terminal time ¢ = T, observe that

S

e (T, m)| = |9"(T,m) = Y mig'(m)| = |"(T,m) = V(T,m)| <
i€d]

Thus, it follows that [le"[[c — 0 as n — oo as claimed. O

Remark 3.2.6. The above sequence of neural networks satisfies several properties based
on its construction. Specifically, note that by the converse of the Arzela—Ascoli theorem,
{¢" }nen is uniformly bounded and equicontinuous on [0, 7] x Sy. In fact, the construction

of ¢™ implies that it is uniformly bounded with respect to the standard norm on C*([0, T'] x

Sa).

3.3 Uniform Convergence of DGM Approximators

We now discuss the convergence of a sequence of neural network approximators ¢" to V/,
the unique classical solution of the HJB equation in Equation (1.1). With the ultimate
goal of establishing uniform convergence of the neural network approximators ™ to
the value function V', we rely on the theory of viscosity solutions to first-order, nonlinear
PDEs. This powerful theory, developed by Crandall, Evans, and Lions in the 1980s for the
explicit purpose of approaching HJB equations (which often lack classical, differentiable
solutions) [33], will allow us to relate the neural network approximators ¢"(t,m) to the
value function V' via a sequence of first-order nonlinear PDEs. Then, using a version of
the comparison principle for viscosity solutions, we obtain the desired convergence.

Below, it will be useful to instead consider the HJB equation for n € §d, where

d—1
Sy = {(nl,...,nd_l) eR" iy >0forallj=1,...,d—1, angl}.
j=1

Then, the simplex Sy can be expressed as

d—1
Sq = {(n,n‘d) €Sy, =1 —Zm}-
j=1

In turn, any function v € C*(S,) induces a function o € C1(S,), given by 5(n) = v(n,n~9).
Furthermore, the gradient V,v(n) = (877].@\(77))?;% satisfies 9, 0(n) = Om;—m,v(m). Fol-

42

3.3 Uniform Convergence of DGM Approximators

lowing (3.1), we define an operator for functions defined on [0, 7] x Sy by

LGt) = —0p(t,n) + > nH'(t,1,V,0(t,n)) + 0~ H(t,n, Vo (t,m)). (3.17)

i€[d—1]

~

Now, the solution to Equation (1.1) can be written V(t,n,n=%) = V(t,n), where Ve
Cl’l(gd) is the unique solution to the modified HJB equation

V](t.n) =0,

V(T = > mg'nn ™) + 0% (.07
i€[d—1]

D)

(3.18)

Above, the modified Hamiltonians take inputs in [0, 7] x Sy x R and are defined by

Hz(t’ 77717) = Hl(t777a 77_d7p1 — Piy---3PDd—1 — Pi; _p2)7

H(t,m,p) == H(t,n,n"%p,0),

for i € [d — 1]. As shown in [2], Equation (3.18) has a unique solution V € C%*(]0, T] x
§d). Additionally, Sy is a compact subset of R%"! allowing us to apply the universal
approximation theorem exactly as above, now on §d. By the definitions of the modified
Hamiltonians (in terms of the original Hamiltonians), we can also apply the exact same
argument as above to obtain a result equivalent to our Theorem 3.2.4 on §d. In particular,

observe that for all ¢ € [d — 1] and p,p’ € §d, we have that

‘Hl(ta 777p) - Hi(t7777pl)’2 = ’Hl(t7 m, nidvpl — Diy---yPd—1 — Di, _pz)

— H'(t,n,n™ "0y = Dl By — 05 =)
d—1
(Z((p pi) — (
j=1
d—1
(2 > =)+ 2(d—1)+1)(p; — p2)2>
j=1

d—1
< C*2(d—1) +1) (Z-—p;>2>

Jj=1

— (0 = P})* + (pi — pi-)Q)

<C?
<C?

43

3.3 Uniform Convergence of DGM Approximators

where D? = 2C?(2(d — 1) + 1). This shows that H' is Lipschitz continuous in p with

Lipschitz constant D > C' > 0 for ¢ € [d — 1], and we similarly observe that

|H(t,n,p) — Ht,n,p)| = |H*(t,n.n"% p,0) — H(t,n,n % p,0)]

< Dlp—7|

so that H is Lipschitz continuous in p, with common Lipschitz constant D > 0, for all
i € [d]. From this, the proof of a modified version of Theorem 3.2.4, now on [0, 7] x Sy,
can proceed exactly as before. Note that the original value function defined on the simplex
can be recovered via V (t,n,77%) = V(t,n) for n € S,.

Now, we can reframe the problem in terms of Equation (3.18), which possesses a
unique classical solution V € C([0,T] x S,). Recall that S; C R%! is the preimage of
the simplex in R? under the chart introduced in Equation (3.18). Working with Equa-
tion (3.18) rather than Equation (1.1) allows us to cite results from the theory of viscosity
solutions that require the domain of the relevant PDE to be open; note that Int(gd) is
an open subset of R9~! whereas S; has empty interior in R%. Additionally, the following

result demonstrates that the convergence result on §d translates to Sy without any issues.

Proposition 3.3.1. Assume that V € C([0,T] x S,) and ¢" € C([0,T] x S,) are such
that ||V — ¢"||sc — 0 asn — oo. Then, ||V — ¢"||sc — 0 as n — oo, where V,¢" €
C([0,T] x Sq) are given by V(t,n,n~?%) = 17(25,77) and ¢"(t,n,n"%) = q/g”(t,n) for all
(t,n,m~%) € [0,T] x Sq and all n € N.

We remark that the opposite direction is also true; given a sequence of functions on
[0, T] x Sq that converge uniformly to V' € C([0,T] x Sy), the corresponding functions on
[0, 7] x S, converge to V € C([0,T] x S), given by V(t,) = V(t,n,7~%) in our notation
above. However, we do not require the converse of Proposition 3.3.1, and the proof is

analogous.

Proof. This is a simple consequence of the definition of §d. Indeed, if ||‘7 - E”IIOO — 0 as

n — 0o. Then, for any € > 0, we have that for all n € N sufficiently large,

sup [V(t,n) — ¢"(t,n)| <e.
(t,n)€[0,T]x Sy

44

3.3 Uniform Convergence of DGM Approximators

Consequently, for all n € N sufficiently large, we have that

sup V() ="t D) = sup V() = ¢"(t,n)]
(tmn~4)€E[0,T]x Sq (t,m)€[0,T]x 84
= sup ’V(ta 77) - ¢n(t7 77)’

(t,n)€[0,T]x Sy

< E.

This means precisely that ||V — ¢"|| — 0 as n — oo. O

As a consequence of the above proposition, it suffices to show the uniform convergence
of a sequence of neural network approximators " to the unique classical solution V of
Equation (3.18) on §d, as we can then recover uniform convergence on the simplex. Note
that from now on, we consider neural networks, denoted by @, which are defined as in
(3.12) but with the input 5 € S, rather than m € S;. From the discussion preceding
Equation (3.18), we also know that Theorem 3.2.4 holds on §d, yielding the existence of a
sequence of neural networks {@"(¢,n) := @(t,n;0™) }nen such that L(0") — 0 as n — oc.

In turn, each network @"(¢,n) satisfies its own “perturbed” PDE, of the form
LI (tm) =ext.m), (t,n) €[0,T] x Sy, (3.19)
with €*(t,n) := e™(t,n,7~%). For notational simplicity, we take

G = > mg'mn ") +n g (n,n?
ie[d—1]

in this section to denote the terminal condition of the HJB equation on §d. Denoting
(AZT = [0,7] x §d as in the previous section, Theorem 3.2.4 above implies that Equa-

tion (3.19) satisfies

F(T,n) — Gn)| = 0 as n — oo.

max |e/;b(t,77)} + max
(tm€[0,TTxSq nESq

With this context in mind, we state the main convergence result of this section.

Theorem 3.3.2. The family of neural network approximators {@"(t,n)}nen satisfying

Equation (3.19) converges uniformly to V € C*1([0,T] x S,), the unique classical solution

45

3.3 Uniform Convergence of DGM Approximators

of Equation (3.18), in the sense that

sup |p"(t,n) — \7(15, n)| — 0 as n — oo.
(t,m)€[0,T]x Sg
To prove the above theorem, we argue via the comparison principle for viscosity
solutions to (1.1) presented in [2]. To this end, we require a suitable definition of viscosity

solutions of Equation (3.18) on 3.
Definition 3.3.3. A function o € C((0,T) x Int(Sy)) is:

(i) a viscosity subsolution of Equation (3.18) if for any p € C*((0,T) x Int(S,)), E[{ﬁ] <
0 for every local mazimum (to,n0) € (0,T) x Int(Sy) of 5 — @ on (0,T) x Int(Sy).

(ii) a wviscosity supersolution of Equation (3.18) if for any & € C((0,T) x [nt(gd)),
L[P] > 0 for every local minimum (ty,no) € (0,T) x Int(Sy) of ©— & on (0,T) X
Int(S,).

(111) a wiscosity solution of Equation (3.18) if U is both a viscosity subsolution and vis-

cosity supersolution.

Remark 3.3.4. When viscosity solutions are introduced in [2], the author also allows for
test functions on [0, 7)) x Sy (resp. [0,T) x S,), noting that [0, T) x Sy (resp. [0,T) x Sy)
is no longer an open subdomain of R**! (resp. RY). However, in order to utilize [33,
Theorem 3.3], the standard comparison principle for viscosity solutions, we must consider
viscosity solutions on open subdomains of R?. As noted in [2], it is also not immediately
clear that a classical solution to Equation (1.1) is a viscosity solution if the latter is
defined on a closed set.

We could alternatively cite the comparison principle from [2, Theorem 3.4] that utilizes
the definition of viscosity solutions on closed sets presented therein. However, in order
to utilize the clearly presented stability properties of viscosity solutions under uniform

limits presented in [32, 33|, we opt for the standard definition in Definition 3.3.3.

In order to establish Theorem 3.3.2, we proceed using a standard comparison principle
argument for viscosity solutions that also leverages the fact that Vec L([0,T] x §d) is

the unique viscosity solution to Equation (3.18) from [2].

46

3.3 Uniform Convergence of DGM Approximators

Proof of Theorem 3.3.2. For each n € N, we may define an operator

LM[o)(t,n) == —Bp(t,m) + > mH'(t,n, Vyo(t,m) + 0~ H L., V,o(t,n)) — (L),
i€[d—1]

corresponding to the sequence of PDEs described in (3.19). Because Lr [ngS] depends only
on the derivatives of ngﬁ (and not on qg itself), we observe that L s proper in the sense
of [33]. This fact also ensures that the technical conditions preceding the comparison
principle [33, Theorem 3.3] are satisfied.

Now, note that by the discussion following Proposition 3.3.1,

max ‘é’\l(t,n)‘ — 0 as n — oo,
(t,m)€[0,T]xSq

meaning that e® converges uniformly to zero on [0, T] x S,. Now, for each n € N, define

T :[0,7T] x Sy x R x R = R by

T"(t,n,p0,p) == —po+ Y mH'(t,n,p) +p *H'(t,n,p) — (L, n).
ie[d—1]

We then have that 7" converges uniformly on [0, 7] x Sy x R x R4 to

T(t,0,p0,p) = —po+ > nH'(t,n,p) +p “Ht,n,p).
i€[d—1]

These definitions are motivated by the fact that Equation (1.1) can be written succinctly

as
T(t,n,0,,Vyp) =0,
while Equation (3.19) is given by
T"(t,n,0:p, Vyp) =0

for each n € N. Now, following [33, Remark 6.3], we note that because ¢" is a classical

solution (and therefore a viscosity solution) to the equation 7™(¢,n,0,p, V,$) = 0 on

47

3.4 Comparison to DGM Algorithm with L2-Loss

(0,T) x Int(S,), then
V(t,m) := lim sup{@"(s,v) :n = j, (t,m) € [0.T) x Sas |(s,v) = (&, m)| < 1/4}

is a viscosity subsolution to the equation T'(¢,n, 0;p, V,») = 0, as we have that

T(t7 77»]707]7) = hT{Il)lOI.}f Tn(ta n:papO)-

On the other hand, we also observe that
V(t,n) = lim inf{3"(s,v) :n > j, (t,9) € [0,T) x Sy, |(s,v) = (t,m)] < 1/5}
7 [e.e]

is a viscosity supersolution to the equation 1'(t,7n,0;p, V,®) = 0 by the same reasoning.
By construction, observe that V <V on [0,T) x §d. Note also that both V and V are
well-defined on {0} x 95, by their construction. However, by the comparison principle
presented in [33, Theorem 3.3], the fact that V is a viscosity supersolution and V is a
viscosity subsolution is sufficient to conclude that V < V on [0,7) x §d, observing that
the comparison principle still holds on the closure of the domain (0,7 x Int(S,).

In particular, V' = V is a viscosity solution. As shown in [2, Theorem 9], Equa-
tion (1.1) has a unique viscosity solution ‘7, showing that V = V = V. Now, [33,
Remark 6.4] implies that lim, . @"(t,n) = ‘A/(t, n) uniformly on [0,7") X Sy.

Finally, note that we also have that

max |3"(T,n) — V(T,n)| — 0,

NESy

from the construction of the modified DGM loss, allowing us to conclude uniform con-

vergence of 3" — V on the entire region [0, 7] x Sy as claimed. O

3.4 Comparison to DGM Algorithm with L*-Loss

At this point, we can clarify the reasons for the modification to the DGM algorithm
made in Section 3.1. Here, we refer to the Sobolev space W*?(2), given by the space
of functions f € LP(Q2) such that for any multi-index o with || < k, the derivative

D> f exists and belongs to LP(2) itself; see [55, Chapter 5] for more details on this

48

3.4 Comparison to DGM Algorithm with L2-Loss

characterization of Sobolev spaces. We also define the space LP(0,T;W*%(Q)) by the
function f € LP([0,7] x Q) such that, for fixed ¢t € [0,T], f(t,-) € W*4(Q). The
spaces LP(0,T; L(2)) are then defined analogously for 1 < p,q < co. The authors of [1]

formulated the L?-loss,' as

LO) = ILlp (5 0] m)3 0 11x500 + l(Tom30) = > mig' (m)[l35,0,, (3.20)

ie[d]
because of the natural connection between the class of equations that they considered
and convergence in L?. A key step in the proof of their analog to Theorem 3.3.2 involves
obtaining a uniform bound on {@(t,m;0")},en in L(0,T; L*(Q)) N L?(0, T; W2(Q)),
where €2 is the open domain on which the PDE is considered. In turn, this arises from
an energy bound on quasilinear parabolic equations such as the one presented in [56], or

in more generality in [57]. However, such a bound only holds for equations of the form

/

Owu — div(a(t, z,u, Vu)) = H(t,z,Vu) (t,z) € (0,T) x Q,
u=0 (t,z) € (0,T) x 09,

u(0,) = up(x) x € .

\

that satisfy the Leray-Lions conditions. Namely, there must exist a > 0 such that

alglP < alt,z,p, &) - €

for all £ € R% and some 1 < p < d. Clearly, this fails in our case, where a is iden-
tically zero, even though our HJB equation otherwise satisfies the structure conditions
in [57] Following the discussion in Section 3.2, it may be possible to obtain a similar
uniform bound by bounding the networks and their weights without losing any universal
approximation guarantees, but we do not currently consider this approach.

Translating the convergence argument in [1, Theorem 7.3] to our context is also com-
plicated by the fact that the class of quasilinear parabolic PDEs for which they prove
convergence of the DGM possesses a standard notion of weak solutions that, via the

dominated convergence theorem, cooperates with convergence in L2 In the case of HJB

!As with the DGM loss in Equation (3.2), this loss is computed in practice by sampling points
according to probability measures v; and vo on [0,7] x Sg and Sy respectively to obtain an unbiased
estimate of the L?-loss in Equation (3.20).

49

3.4 Comparison to DGM Algorithm with L2-Loss

equations, however, viscosity solutions take the place of weak solutions and instead be-
have nicely with respect to uniform convergence. Thus, we require that e* — 0 uniformly
on [0,7] x S; in Equation (3.19), but the formulation of the DGM with L2-loss only
implies convergence of the error term in L2.

Finally, [1] only concludes uniform convergence of the neural network approximators
to the true solution of the PDE after imposing additional assumptions of uniform bound-
edness and equicontinuity on the neural networks. Although this may be a reasonable
assumption to include, we find that our modified DGM algorithm and the theory of vis-
cosity solutions provide a more direct route to uniform convergence; see Section 3.4 for a
more detailed discussion of the equicontinuity of neural network approximators and the
potential issues with such an approach.

As discussed above, the proof technique via a comparison principle presented in The-
orem 3.3.2 no longer holds for the DGM with L*-loss, given by Equation (3.20). However,
we do still have an analogue of Theorem 3.2.4 for the loss functional defined in Equa-
tion (3.20). For convenience, we recall that the DGM algorithm with L?-loss aims to
minimize the L?-error of the approximate solution to the PDE in question. Specifically,
as presented in [1], DGM learns an approximator ¢(t, m;#), parametrized by 6, by mini-

mizing the L?-loss of the HJB equation:

L(9) := 1LLe (-, 5 Ot m)5 0, 17x 500 + 0(Toms0) = >~ mig! (m)|3.s,1-
€[d]
Above, v, and v, are probability densities on [0, 7] x S; and Sy respectively. We then
have the following analog to Theorem 3.2.4:

Theorem 3.4.1. Let 0 € CY(R) be bounded and nonconstant. For every € > 0, there
exists a constant K(d,T,C) > 0, where d is the dimension of the simplex Sy, T is the
finite time horizon of the MFCP, and C' is the Lipschitz constant of the PDE-Hamiltonian
in Equation (1.1), such that for some ¢ = @(+,+;0) € €41(0), the DGM loss functional
in Equation (3.20) satisfies L(A) < Ke.

Proof. The proof of this theorem is similar to that of Theorem 3.2.4, with a few slight

20

3.4 Comparison to DGM Algorithm with L2-Loss

modifications. In particular, the Liptschitz continuity of the PDE-Hamiltonian yields

2

/ Z m;H'(t,m, D'o(t,m;0)) — Z m;H'(t,m, D'V (t,m))| dvi(t,m)
Qr |ied] ic[d]
2

_ /Q S (H (t,m, Di(t, m; 0)) — H(t,m, D'V (t,m))| di(t,m)

T |ie[d] (3.21)
<d¥ / g (H (6, m, Dip(t, m; 0)) — Hi(t,m, DV (t,m))) [don (£, m)
i€[d]
< dC? Z/ |Dio(t,m;0) — D'V (t,m)|*dvy (t, m).
i€[d]

Above, we apply the Cauchy—Schwarz inequality in the second-to-last line above and note
that |m;| < 1 for any m € Sy. Now, for each i € [d] and any (¢,m) € Qr, observe that
by denoting the standard basis of R? by {e; };c[q), we have that

[D'(t,m; 0) — D'V (t,m)]* = [(Vap(t,m; 0) = Vi V(t,m)) - (e — e)|?

N | —
=

1

<
Il

< ViV (t,m) = Vit m; 0) Ple; — e

N | —
=

1

J

< |V V(t,m) — Vie(t,m;0)[%,

again by applying the Cauchy—Schwarz inequality. Reusing the inequality from (3.14),
we can bound (3.21) by

dc2z/ |Dip(t,m; 0) — DV (t,m)|*du (t, m)

1€[d]

< > /Q Vo (V(E,m) — ot m: 0))Pdun (¢, m)

< Ke?

for some positive constant K = K (d,T,C) > 0 by the construction of . Finally, because

51

3.4 Comparison to DGM Algorithm with L2-Loss

the value function V' satisfies L[V](¢t,m) = 0 for all (¢,m) € Qr, we may write

L(O) = L[N m) 3.0y, + 0(Tms 0) =Y mag' (m)|3.5,.,
€[d]

= [Llpl(t,m) = LIVIE,m)l20p0, + 16(Tm;0) = V(T m)3.5, .,
2

< 2/ ZmiHi(t,m,D (t,m;0)) Zml (t,m, D'V (t,m))| duvy(t,m)
Q1 |ic[d] i€[d]

2/ 0,V (t,m) — Dpp(t, m; 0)|* dv (t, m)
Qr

; | o(T,m;0) = V (T, m)|*dva(m)

< Ke?

by applying the Cauchy-Schwarz inequality yet again, taking K larger if necessary, and
noting that the estimate in (3.13) provides bounds on the two remaining terms in the

above expression. O

Remark 3.4.2. In the case of the DGM algorithm with L?-loss, the measures v, and s,
regardless of the densities that they correspond to, are defined as probability measures
on [0,7] x Sg and Sy respectively. Thus, the above result is independent of the choice of

densities v, and 15, as we simply use the bounds

/ OV (£, m) — Ot m: 0)2 dus (£, m) < 20 () — €2
Qp
and

’()O(Tvm7 9) - V(T7 m>’2dy2<m) < 62V2(Sd> = 82
Sa

respectively.

3.4.1 Equicontinuous and Uniformly-Bounded Neural Networks

Recall that in [1, Theorem 7.3], the authors require additional assumptions of both
equicontinuity and uniform boundedness of neural network approximators that we bypass
via the theory of viscosity solutions. The primary condition that allows for equicontinuity

is the boundedness of the weights in the hidden layer(s) of the neural network used to

52

3.4 Comparison to DGM Algorithm with L2-Loss

approximate some continuous function. Given the discussion in [48], which analyzes the
approximation power of networks with bounded weights, it is likely possible to approx-
imate V' € C"([0,T] x Sg) (in the standard norm on C!, as in Proposition 3.2.1) via a
sequence of neural networks with bounded weights. If this is the case, we may apply the
equicontinuity results established in [58], obtaining an equicontinuous sequence of neural
network approximators to the value function V. Finally, the argument of [1] provides for
uniform boundedness, allowing us to apply the Arzela—Ascoli theorem to obtain uniform
convergence.

This discussion is summarized more precisely below in a partial result. Importantly,
the following result only holds for two-layer neural networks. To this end, we consider

two layer networks of the form

n d
€§2+1<‘7) = {90 R™T SR ‘ p(t,x;0) = Zﬂia (Oéut + Zo‘jﬂ,z‘l‘j + Ci) , 0€ R2"+n(d+1)} .
=1 j=1

Each network in this class has weights given by 6 = (B1,..., Bn, @11, -+, Qdt1m, C1y - -+, Cn) €

R27+tn(d+1) We then denote

o0

Crani(0) = | €0, (0).

n=1
With this notation out of the way, we can state the following theorem.

Theorem 3.4.3. Take €5 411(0) as defined above and consider any function f € C™(K),
for a compact set K C R*™. Let M > 0 be such that sup,cx |f(x)| < M. Denote by

b.a11(0) the subset of networks with weights 0 = (81, .., Bn, Q115+ -+, QAdg1n, C15 - - -, Cn) €
R2+7d+) satisfying || < M, || < M, and |B;] < M for alli = 1,...,n and j =
1,...,d+1. Then, for any m € N, there exists a sequence of neural networks {p*(t,m) :=
©(t, m; 0%) }ren with an increasing number of hidden units such that || f — @*||emx) < 1/k
for all k € N. Furthermore, the sequence {p*}ren is equicontinuous with respect to the

inputs (t,m) € [0,T] x Sy.

Proof. As shown in [48], any continuous, bounded functions can be uniformly approx-
imated by neural networks with bounded weights. Assuming that we can obtain a
universal approximation result for neural networks in &, ;. ,, [58, Proposition 8] shows

that the weights of any network ¢(-,-;0) € &, ;,,(c) with n hidden units such that

93

3.4 Comparison to DGM Algorithm with L2-Loss

I — (5 0)]lo < 1 must have weights satisfying

iﬁi < M+1.

i=1

In turn, the above condition allows us to apply [58, Theorem 20|, which states that
the subset of &, ;,, (o) satisfying the above summability condition is equicontinuous with
respect to the input space. Specifically, this implies that the sequence {©*}ren is equicon-

tinuous with respect to the inputs (¢, m) € [0,7] x Sy as claimed. O]

In order to utilize Theorem 3.4.3 in our context, however, we require a suitable ver-
sion of the universal approximation theorem for neural networks with bounded weights.
Despite a thorough literature review, it does not seem that the universal approximation
result in Proposition 3.2.1 has an analogue for networks with uniformly bounded weights.
In particular, there is no current result that allows for the approximation of an arbitrary
function h € C™(R*1) and its derivatives on a compact set using networks with bounded
weights. For the time being, the DGM algorithm with uniform loss and Theorem 3.3.2

provide a workaround for this issue.

3.4.2 Stability Properties of the DGM

Here, we also note an interesting connection to recent work in the field of physics-informed
neural networks (PINNs), a recent framework for incorporating PDE constraints into the
training of neural networks. Specifically [59] show that, for a class of second-order HJB
equations arising from stochastic control problems, it is impossible to obtain a convergence
guarantee along the lines of Theorem 3.3.2 if L?-loss is used. We emphasize that this result
does not necessarily apply to the first-order HJB equation arising from the MFCP. Our
work is further complicated by the fact that Equation (1.1) has solutions on the simplex
[0,T] x S4, whereas traditional stochastic control problems (for which the HJB equation
is derived via a dynamic programming principle) are solved over [0,7] x R". However,
future work may investigate whether the stability results obtained in [59] generalize to
the context of the MFCP. Currently, this connection only provides some intuition as to
why the L*>-loss may be the appropriate choice for training neural networks to solve

Equation (1.1).

o4

3.4 Comparison to DGM Algorithm with L2-Loss

To make the above statement slightly more precise, we define an operator for second-

order HJB equations on R" x [0, 77, given by
1
Tlul(z,t) := u(x,t) + 502Au(3§, t)+ mij{l/l{r(.r, m(t,z),t) + Vu - my.
me
In turn, [59] considers HJB equations of the form

Tlul(z,t) =0 2z eR™x[0,T]

u(z, T) = g(x),

(3.22)

where M is a set of admissible (feedback) controls and o is a parameter that governs the

evaluation of a state {X;}o<i<r of a stochastic control problem via the SDE

dX, =m(s, Xy)ds + cdWs, s€[0,T]

X():J].

Above {W}scjo.r] is a standard Brownian motion. In [59], the authors impose standard
assumptions in stochastic control to ensure that the solution to Equation (3.22) is unique
[34]. As usual, the objective of the stochastic control problem is to minimized the expected

cost

atm) =] [X msyis +)]

where the expectation is taken over the randomness of the stochastic process {X; }o<t<r,
the rate function f : R™ x R" x [0,7] — R denotes the running cost of the control
problem, and g : R” — R denotes the terminal cost. The authors in [59] also assume that
flz,m) = ar|my|** +. ..+ a,|my,|* —@(x,t) for coefficients ay, ..., a,, o, ..., a, € Rand
some function ¢ € C(R" x [0,77]). Under this assumption, one can write the first-order

term in Equation (3.22) as

min {r(x,m(t,z),t) + Vu-my} = — Z Ala;, ;) |0z,

ci(as,0) _ ¢
min, > o(x,t).

Although somewhat restrictive, this assumption applies to common settings in stochastic

control such as linear—-quadratic-Gaussian control. Before stating the main result of [59]

95

3.4 Comparison to DGM Algorithm with L2-Loss

and its relevance to our work, we first require a definition.

Definition 3.4.4. Let (V.|| - [|1), (Va, || - l|2), (Va, || - |3) be Banach spaces such that u €
ViNVz and uw(T,-) € Vi, where u is the unique solution to Equation (3.22). Then,
Equation (3.22) is (Vi, Vo, V3)-stable if for any v € Vi N V3 with (T, -) € Vs,

lu = vlls < C ([Tl + [lo(T,) = gll2)

for some constant C' that does not depend on v.

Intuitively, the above definition gives a condition under which training the DGM with
loss given by the norms on V; and V5, respectively, will yield convergence to the true
solution of Equation (3.22) with respect to the norm on V3. For instance, if one aims to
apply the standard DGM algorithm with L?-loss to solve a PDE on a region Q x [0,7] C
R"™ x [0,T], one could take V; = L*(Q x [0,T]), Vo = L*(Q2), and V3 = C(Q x [0,T]).
If such a PDE is (Vi, Vs, Vs)-stable, then training the DGM with L?-loss will ensure
uniform convergence to the true solution. Similarly, in Theorem 3.3.2, we show that
with Vi = L([0,T] x S,), Vo = L=(S,), and V5 = L>([0,T] x S,), Equation (3.18) is
(Vi, Vo, V3)-complete.

Having defined the stability of Equation (3.22) as above, we state some relevant results

from [59]. Specifically, the authors therein show the following two propositions:

Proposition 3.4.5. [59, Theorem 4.3] For p,q > 1, let o = % and ¢ = maxj<j<n Ci,
with the coefficients ¢; as in Equation (3.22). Assume that the following conditions hold

onp,q,ro-

(¢ — 1)n? 1

> 2,(1—1/c > -
p=2max{2,(1-1/c)n}, q 2 oni2

1
P
p

S

Then, for any r € [1,19) and bounded open subdomain @ C R™ x [0,T], Equation (3.22)
is (LP(R™ x [0, T]), LY(R™), W (Q))-stable for ¢ < 2.

Loosely speaking above theorem implies that stability is achieved when p,q > n, a
condition that is not met when applying the DGM, with L2-loss, to high-dimensional
HJB equations. Given the preceding result and the fact that if f € L>®(R™ x [0,7]) N
Li(R"x[0,T]) for all ¢ > 1, then || || ee = limy,_,oo || f]| e, Wwe might expect the DGM with

L*>-loss to be stable, precisely as we show in the case of the MFCP. Furthermore, [59]

26

3.4 Comparison to DGM Algorithm with L2-Loss

also provides the following theorem showing that for any p < n/4, there exists an HJB
equation as in Equation (3.22) such that the L?-loss for the DGM is arbitrarily small, yet
the distance between the true solution to the HJB equation and the DGM approximation

is arbitarily large. More precisely, we have the following:

Proposition 3.4.6. [59, Theorem 4.4] There exists an equation of the form Equa-
tion (3.22), with unique solution u, such that for any e > 0, C > 0, r > 1, m € N,
and p € [1,n/4], there exists a function v € C*(R" x [0,T]) such that the following two

conditions hold:
(1) |Tv = @||er@rxpm <€, v(T,-) =g, and u — v is compactly-supported.
(2) |[u—vllwmnr@oxpmry > C-

In summary, while the DGM with respect to LP-loss for p large (or p = oo) provides
stability guarantees in the sense of Definition 3.4.4, if p < n/4, then carrying out the
DGM algorithm with LP-loss provides no guarantee that the resulting neural network
approximation will converge to the true solution to Equation (3.22). In particular, the
standard L*-loss approach from [1] will not suffice.

We again emphasize that the result stated above in Proposition 3.4.6 only holds for
the second-order HJB equation in Equation (3.22), with domain R" x [0,7]. However,
the recent progress made in [59] provides, at the very least, heuristic insight into the gap
between our proof technique, which relies on an L*-loss formulation of the DGM, and
the original L?-loss approach. Investigating such stability properties for Equation (1.1)

remains the subject of future work.

o7

Chapter 4

Numerical Experiments

4.1 DGM Experiments

In this section, we present numerical results for the DGM applied to a simple example
case of the MFCP, as presented in [2, Example 2]. In particular, we work with the

following example.
Example. Consider the quadratic running cost

. 1 i
flti,a,m) =3 > ol + film),

Jeld],j#i

with f¢(m) := m; and {c;;}ijeqq) € R? a cost matrix that encodes the cost of transi-
tioning from state i to state j for i # j. We consider the linear terminal condition given

by
g'(m) =m;
for i € [d]]. With this choice of terminal cost, we obtain the terminal condition

V(T,m) =G(m)=>_ m}.

i€[d]

o8

4.1 DGM Experiments

In this simple example, derived in [2], the Hamiltonian is explicitly given

H(tm) = 3 (=0 (-2)s - (0 (-2)?) - film)

JFi

where

Recall that M > 0 is some constant such that A4 = [0, M]d2, where A is the action
space for the MFCP. Under this construction, all of the convexity and Lipschitz continuity
constraints in Assumptions (A) — (C) are satisfied [2].

For the sake of comparison, we utilize the same architecture as in [1]; a neural network
with four hidden LSTM-like layers and one dense output layer, with tanh activation
throughout. We performed hyperparameter tuning on the number of layers, the number
of samples used in each epoch, the width of the network, and the learning rate schedule.
Unless otherwise noted, all results were produced by training the neural network for 200
epochs, with 10 gradient steps in each epoch, and K = 10000 samples for each epoch.
After hyperparameter tuning, we found that a cosine one-cycle learning rate schedule,
with a peak learning rate of a = 0.0008, achieved the best performance. All experiments
were performed with the Adam optimizer with weight decay and gradient clipping, which
we found improved performance.

The plots in Figure 4.1 and Figure 4.2 below demonstrate the value functions approx-
imated by DGM with L*-loss and L?-loss respectively in dimension d = 2. Both our
DGM algorithm (with the L*>°-loss) and the DGM algorithm with L2-loss perform simi-
larly, accurately solving the two-dimensional HJB equation. Figures 4.4 and 4.3 contain
the corresponding loss curves. We remark that the loss curves for the two methods are
displayed on different scales because they are not comparable metrics of the performance
of the solver. Given the formulation of the L*-loss in Equation 3.2, we expect the L>°-loss
to converge to a higher value than the L?-loss, even if both metrics approximately solve

the HJB equation.

29

4.1 DGM Experiments

As demonstrated in Figures 4.4 and 4.3, both metrics are susceptible to local minima
using the LSTM-like architecture outlined in [1]. Given sufficient training time and
appropriate hyperparameter tuning, including the number of samples at each step, the
learning rate schedule and the optimizer in use, both algorithms can closely approximate
the true terminal condition of the example problem as demonstrated in Figure 4.5. We
expect that a deeper neural network, coupled with increased training time, would further
improve accuracy. However, we defer such studies to a future work, having demonstrated

the validity of the algorithm with a relatively simple architecture here.

Approximate Value Function, Trained with L*-Loss

| g

(Tw — T TwNA
e-]

08 ul
m tume

1.0 1.0

Figure 4.1 Approximate value function, learned using L*°-loss, in dimension d = 2.

In Figure 4.6, we demonstrate the relationship between the sample size K and the
stability of the loss for the uniform DGM algorithm. Unless otherwise specified, all
numerical tests are carried out with K = 10000, as the tradeoff between stability and
runtime becomes worse as the number of samples exceeds K = 10000. As K increases,
we observe more stable training, as expected.

Finally, in Table 4.1, we demonstrate the scalability of the DGM algorithm, im-
plemented in JAX and run with GPU acceleration. By utilizing JAX’s built-in auto-

differentiation, just-in-time compilation, and GPU acceleration, the DGM algorithm

60

4.1 DGM Experiments

Approximate Value Function, Trained with L2-Loss

10

(Tw =1 'Tw'NA
[

0.8

1.0 1.0 . 0
m T\K\e\

Figure 4.2 Approximate value function, learned using L?-loss, in dimension d = 2.

Loss vs. Iteration for d = 2 with L®-Loss

~—— Combined Loss
PDE Loss
101 4 Terminal Loss

Loss

T T T v T T T v
0 250 500 750 1000 1250 1500 1750 2000
Iteration (n)

Figure 4.3 L training loss in dimension d = 2. PDE loss refers to the first term in the
L*>-loss from Equation (3.2), terminal loss refers to the second term in Equation (3.2),
and the combined loss represents the entirety of Equation (3.2).

61

4.1 DGM Experiments

Loss vs. Iteration for d = 2 with L2-Loss

Combined Loss
PDE Loss
Terminal Loss

Loss

10° 4

0 250 500 750 1000 1250 1500 1750 2000
Iteration (n)

Figure 4.4 L? training loss in dimension d = 2. PDE loss refers to the first term in the
L?-loss from Equation (3.20), terminal loss refers to the second term in Equation (3.20),
and the combined loss represents the entirety of Equation (3.20).

Approximate and True Value Functions at Time t=T

10 A —— L*-Loss Approximation
L2-Loss Approximation
Terminal Condition
9 -
8 -
g
e
S 7
o \
5 -
0.0 0.2 0.4 0.6 0.8 1.0
my

Figure 4.5 Approximate and true terminal conditions for both DGM algorithms in
dimension d = 2.

62

4.2 Improved Sampling Via Adversarial Training

scales well to dimension d = 200, with roughly linear increases in runtime past dimension
d = 100. By runtime, we refer to the time that it takes to train the DGM network with
uniform loss for 200 epochs, with 10 gradient descent steps in each epoch, and K = 10000
for each epoch. As the dimension increases, we observe that the loss decreases, as sam-
pling points near the boundary of the simplex occurs with much lower probability in
higher dimensions. Indeed, Figure 4.5 demonstrates that neither the L°°-loss nor the
L?-loss is able to fully learn the terminal condition near the boundary of the simplex,
but this has a smaller impact on the loss in higher dimensions, thus resulting in lower
losses as the dimension increases. However, as in dimension d = 2, we still expect that
the neural network learns the solution to the HJB equation well away from the boundary

of the simplex.

L>-Loss vs. Iteration with Varying Sample Sizes

K=10

1014

Loss

1004

T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
Iteration (n)

Figure 4.6 Dependence of L*-loss on number of samples K. As the number of samples
increases, the training process becomes more stable. Note that, with fewer samples, a
lower loss does not reflect a more accurate solution, as the sampled points are likely do
not reflect the validity of the approximation on the entire simplex.

4.2 Improved Sampling Via Adversarial Training

In this section, we briefly return to the error bound presented in Proposition 3.1.1 of
Section 3.1. There, we showed that the expected difference between the sampled L>°-
loss and the true L>=-loss is O(K~1/(4=1)). As noted in Section 3.1, this bound is likely

63

4.2 Improved Sampling Via Adversarial Training

Table 4.1: Uniform DGM training times and losses as dimension d increases. PDE loss
refers to the first term in the DGM loss from Equation (3.2), while terminal loss refers
to the second term in Equation (3.2).

DIMENSION d TRAINING TIME (s) CoMBINED Loss PDE Loss TERMINAL LosS

2 47.5 1.2134 0.5452 0.6682
5 56.1 0.7417 0.2508 0.4909
10 62.0 0.7200 0.1190 0.6010
20 65.0 0.2772 0.0392 0.2380
50 76.0 0.0588 0.0093 0.0494
100 100.0 0.0217 0.0031 0.0186
200 221.0 0.0070 0.0011 0.0059

pessimistic, as the numerical experiments in Section 4.1 exhibit convergence with ap-
proximately K = 10000 samples. In practice, it may be possible to more closely ap-
proximate the true L*°-loss and improve the training procedure of the DGM algorithm
via adversarial training. Adversarial training, in the context of neural network solu-
tions to high-dimensional PDE;, refers to a class of SGD-based algorithms in which, prior
to each standard SGD step, an extra gradient step that biases training towards points
that maximize the chosen loss functional is performed. A modified DGM algorithm that

incorporates adversarial training is presented in Algorithm 2.

Algorithm 2 Uniform DGM with Adversarial Training

Initialize parameters © € R
Initialize tolerance ¢ € (0, 1)
n <0
Uniformly sample (), m@) p@)),_; € [0,T] x Sy x Sy
while G((tY m(7) p(j))]:L K,Q(”)) >0 do
Sample (9, mW) pW)),_y x €[0,T] x Sy
for j=1,..., Kdo

m) ¢ Projg, (m") + nsignV,, ol
(T

pY) + Projg, (p9 + nsignV, (¢ ,p“), 0) — G(p7))?)
end for
ein+1) . p(n) _ veg((), mU) p(a)) 17“"K79(n))
n<—n-+1
end while

Above, n > 0 is a learning rate hyperparameter for the adversarial training step of
the algorithm. Compared to the original DGM algorithm with L°° loss, presented in

Algorithm 1, adversarial training only requires a slight modification. Namely, before

64

4.2 Improved Sampling Via Adversarial Training

updating the parameters via a gradient step with respect to the L°°-loss, the above
algorithm takes a gradient a point that (locally) maximizes the L>°-loss. This is reflected

by the updates of the form
t0) Projjo (t9) + nsignV (L[o(-, 5 0)] (9, mY)))?) |

for j = 1,..., K. For instance, the gradient V,(L[p(-,-;0)](t¥), m")) is in the direction
of a point that (locally) maximizes the PDE loss, with respect to the time variable. Once
this update step has been performed, the modified sample is projected back onto the
domain of interest. In the case of the time variable, this corresponds to a projection

according to the function

0 ¢<0,

Projo (1) = qt te(0,7),

T t>T.
\

Similarly, for the sampled points on the simplex, we perform adversarial updates of the

form
m9 « Projg, (mY + nsignV,,.(L[(-, - 0)](t9, mD))?)
and

pY) « Projg, (p + nsignV,(o(T, p; 0) — G(p))?) ,

both for j =1,..., K. Exactly as before, both updates return a modified sample in the
direction of a point that locally maximizes the PDE loss and the terminal loss respec-
tively. Now, the function Projg, is the projection onto the simplex S; with respect to the
Euclidean norm. In general, this projection does not have an analytical expression, but
several efficient procedures exist to compute it numerically [60].

Adversarial training is itself a standard heuristic method in machine learning [61] that
aims to improve robustness. However, the technique was only recently applied to neural

network-based PDE solvers, as in [59, 62, 63]. As in Section 3.4, previous work that applies

65

4.2 Improved Sampling Via Adversarial Training

adversarial training to solve high-dimensional PDE is typically limited to the case of
second-order, parabolic HJB equations. Applications of adversarial training to Poisson’s
equation and the Allen—Cahn equation are also explored in [63], but thus far, no work has
studied applications of this method to first-order HJB equations that arise from MFCPs.
We remark, however, that this approach is purely heuristic, and the impact that it may
have on convergence is currently unknown. Although empirical studies for second-order
HJB equations with analytical solutions in [59, 62] illustrate improvements over standard,
DGM-type algorithms, there is no work that currently quantifies the impact that the
additional gradient step in Algorithm 2 has on the error bound in Proposition 3.1.1.
Recent theoretical work in [64] attempts to rigorously characterize the training dynamics
of adversarially-trained neural networks, but the results therein remain limited to the
case of random deep neural networks. Future work may attempt to describe the training

dynamics of adversarial training when applied to DGM-type algorithms.

66

Chapter 5

Conclusions

We present a novel method for solving high-dimensional HJB equations arising from
MFCPs, complete with a convergence proof our algorithm. Our algorithm, which utilizes
an L*-loss functional for training rather than a standard L*-loss functional, allows us
to leverage the theory of viscosity solutions to prove that if a section of neural network
approximators takes the L*-loss functional to zero, then the sequence must uniformly
converge to the unique viscosity solution of the HJB equation. Notably, our approach
does not assume boundedness and equicontinuity of the sequence of neural network ap-
proximators as in [1], and we thus provide a more general convergence guarantee than
previous work that leverages the DGM to solve high-dimensional HJB equations. Our
work provides a rigorous foundation for future, deep learning-based research into numer-
ical solutions for the MFCP.

There exists significant potential for future work in this area, both of theoretical
and computational nature. For instance, because many HJB equations do not admit
classical solutions, relaxing the regularity assumptions presented in Section 2 is of utmost
importance. Establishing the convergence of the DGM (or a related algorithm) for HJB
equations that only admit viscosity solutions, as outlined in [2], would open a new avenue
of research for approximating weak solutions to high-dimensional PDEs using machine
learning and provide a guarantee that is applicable to a more general class of MFCPs.
Similarly, future work may investigate the convergence and performance of deep BSDE
and related deep backwards schemes, as introduced in [26]. The convergence of a deep
backwards scheme for mean-field games was recently established in [14], and it is likely
that a similar approach applies to MFCPs. On the computational side, Section 4.2

presents a possible avenue for future work that aims to improve the efficiency of the

67

DGM. Importantly, the DGM is a sampling-based algorithm in practice. Consequently,
although it is far computationally-tractable than discretization-based PDE solvers in high
dimensions, the DGM still suffers from dimensionality-related effects (due to sampling)
that may be abated by better training schemes. Investigating convergence properties of

adversarial training schemes is also of theoretical and practical interest.

68

References

1]

Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for
solving partial differential equations. Journal of Computational Physics, 375:1339—
1364, 2018. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.08.029. URL

https://www.sciencedirect.com/science/article/pii/S0021999118305527.

Alekos Cecchin. Finite state N-agent and mean field control problems. FESAIM:
COCYV, 27:31, 2021. doi: 10.1051/cocv/2021032. URL https://doi.org/10.1051/
cocv/2021032.

Min Yang, Guanjun Liu, Ziyuan Zhou, and Jiacun Wang. Partially Observable Mean
Field Multi-Agent Reinforcement Learning Based on Graph Attention Network for
UAV Swarms. Drones, 7(7):476, 2023. ISSN 2504-446X. doi: 10.3390/drones7070476.
URL https://www.mdpi.com/2504-446X/7/7/476.

Médéric Motte and Huyén Pham. Mean-field Markov decision processes with com-
mon noise and open-loop controls. Ann. Appl. Probab., 32(2):1421-1458, 2022. ISSN
1050-5164. doi: 10.1214/21-aap1713. URL https://doi-org.proxy.lib.umich.
edu/10.1214/21-aap1713.

Jian Li, Rajarshi Bhattacharyya, Suman Paul, Srinivas Shakkottai, and Vijay Sub-
ramanian. Incentivizing sharing in realtime D2D streaming networks: A mean field
game perspective. In 2015 IEEE Conference on Computer Communications (INFO-
COM), pages 2119-2127, 2015. doi: 10.1109/INFOCOM.2015.7218597.

Martin Burger, Marco Di Francesco, Peter A. Markowich, and Marie-Therese Wol-
fram. On a mean field game optimal control approach modeling fast exit scenarios in
human crowds. In 52nd IEEE Conference on Decision and Control, pages 3128-3133,
2013. doi: 10.1109/CDC.2013.6760360.

69

https://www.sciencedirect.com/science/article/pii/S0021999118305527
https://doi.org/10.1051/cocv/2021032
https://doi.org/10.1051/cocv/2021032
https://www.mdpi.com/2504-446X/7/7/476
https://doi-org.proxy.lib.umich.edu/10.1214/21-aap1713
https://doi-org.proxy.lib.umich.edu/10.1214/21-aap1713

REFERENCES

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Christian Doghé. Modeling crowd dynamics by the mean-field limit approach. Math-
ematical and Computer Modelling, 52(9-10):1506-1520, November 2010. ISSN 0895-
7177. doi: 10.1016/j.mem.2010.06.012. URL http://dx.doi.org/10.1016/j.mcm.
2010.06.012.

Ken R Duffy. Mean field Markov models of wireless local area networks. Markov

Processes and Related Fields, 16(2):295-328, 2010.

Vivek S. Borkar and Rajesh Sundaresan. Asymptotics of the invariant measure in
mean field models with jumps. Stoch. Syst., 2(2):322-380, 2012. doi: 10.1214/
12-SSY064. URL https://doi.org/10.1214/12-SSY064.

Robert J. Aumann. Markets with a continuum of traders. Econometrica, 32:39-50,

1964. ISSN 0012-9682.

David Schmeidler. Equilibrium points of nonatomic games. J. Statist. Phys., 7:
295-300, 1973. ISSN 0022-4715.

Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. Japanese Journal of
Mathematics, 2(1):229-260, 2007. doi: 10.1007/s11537-007-0657-8. URL https:
//doi.org/10.1007/s11537-007-0657-8.

Minyi Huang, Roland P. Malhamé, and Peter E. Caines. Large population stochastic
dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equiv-

alence principle. Communications in Information € Systems, 6(3):221 — 252, 2006.

Asaf Cohen, Mathieu Lauriere, and Ethan Zell. Deep Backward and Galerkin Meth-
ods for the Finite State Master Equation, 2024.

René Carmona and Frangois Delarue. Probabilistic Analysis of Mean-Field Games.
SIAM Journal on Control and Optimization, 51(4):2705-2734, 2013. doi: 10.1137/
120883499. URL https://doi.org/10.1137/120883499.

Daniel Andersson and Boualem Djehiche. A Maximum Principle for SDEs of Mean-
Field Type. Applied Mathematics € Optimization, 63(3):341-356, 2011. doi: 10.
1007/500245-010-9123-8. URL https://doi.org/10.1007/500245-010-9123-8.

70

http://dx.doi.org/10.1016/j.mcm.2010.06.012
http://dx.doi.org/10.1016/j.mcm.2010.06.012
https://doi.org/10.1214/12-SSY064
https://doi.org/10.1007/s11537-007-0657-8
https://doi.org/10.1007/s11537-007-0657-8
https://doi.org/10.1137/120883499
https://doi.org/10.1007/s00245-010-9123-8

REFERENCES

[17]

[18]

[19]

[20]

[22]

[23]

[24]

Huyén Pham and Xiaoli Wei. Dynamic Programming for Optimal Control of Stochas-
tic McKean—Vlasov Dynamics. SIAM Journal on Control and Optimization, 55
(2):1069-1101, January 2017. ISSN 1095-7138. doi: 10.1137/16m1071390. URL
http://dx.doi.org/10.1137/16M1071390.

Huyéen Pham and Xiaoli Wei. Bellman equation and viscosity solutions for mean-field
stochastic control problem. ESAIM: Control, Optimisation and Calculus of Varia-
tions, 24(1):437-461, January 2018. ISSN 1262-3377. doi: 10.1051/cocv/2017019.
URL http://dx.doi.org/10.1051/cocv/2017019.

Alain Bensoussan, Jens Frehse, and Phillip Yam. Mean Field Games and Mean Field
Type Control Theory. Springer New York, 2013. ISBN 9781461485087. doi: 10.1007/
978-1-4614-8508-7. URL http://dx.doi.org/10.1007/978-1-4614-8508-7.

René Carmona and Francois Delarue. Probabilistic Theory of Mean Field
Games with Applications I. Springer International Publishing, 2018. ISBN
9783319589206. doi: 10.1007/978-3-319-58920-6. URL http://dx.doi.org/10.
1007/978-3-319-58920-6.

René Carmona and Francois Delarue. Probabilistic Theory of Mean Field
Games with Applications II. Springer International Publishing, 2018. ISBN
9783319564364. doi: 10.1007/978-3-319-56436-4. URL http://dx.doi.org/10.
1007/978-3-319-56436-4.

Lars Ruthotto, Stanley J. Osher, Wuchen Li, Levon Nurbekyan, and Samy Wu
Fung. A machine learning framework for solving high-dimensional mean field game
and mean field control problems. Proceedings of the National Academy of Sciences,
117(17):9183-9193, April 2020. ISSN 1091-6490. doi: 10.1073/pnas.1922204117.
URL http://dx.doi.org/10.1073/pnas.1922204117.

Jean-Pierre Fouque and Zhaoyu Zhang. Deep Learning Methods for Mean Field
Control Problems With Delay. Frontiers in Applied Mathematics and Statistics,
6:11, 2020. ISSN 2297-4687. doi: 10.3389/fams.2020.00011. URL https://www.
frontiersin.org/articles/10.3389/fams.2020.00011.

Diogo A. Gomes, Joana Mohr, and Rafael Rigao Souza. Continuous Time Finite

State Mean Field Games. Applied Mathematics € Optimization, 68(1):99-143, 2013.

71

http://dx.doi.org/10.1137/16M1071390
http://dx.doi.org/10.1051/cocv/2017019
http://dx.doi.org/10.1007/978-1-4614-8508-7
http://dx.doi.org/10.1007/978-3-319-58920-6
http://dx.doi.org/10.1007/978-3-319-58920-6
http://dx.doi.org/10.1007/978-3-319-56436-4
http://dx.doi.org/10.1007/978-3-319-56436-4
http://dx.doi.org/10.1073/pnas.1922204117
https://www.frontiersin.org/articles/10.3389/fams.2020.00011
https://www.frontiersin.org/articles/10.3389/fams.2020.00011

REFERENCES

[25]

[26]

[27]

[28]

[32]

Vassili N. Kolokoltsov. Nonlinear Markov Games on a Finite State Space (Mean-field
and Binary Interactions). International Journal of Statistics and Probability, 1(1):
77-91, Apr 2012. doi: 10.5539/ijsp.vinlp77. URL http://dx.doi.org/10.5539/
ijsp.vinlp77.

Weinan E, Jiequn Han, and Arnulf Jentzen. Deep learning-based numerical methods
for high-dimensional parabolic partial differential equations and backward stochas-
tic differential equations. Commun. Math. Stat., 5(4):349-380, 2017. ISSN 2194-
6701,2194-671X. doi: 10.1007/s40304-017-0117-6. URL https://doi.org/10.
1007/s40304-017-0117-6.

Huyén Pham. Feynman-Kac representation of fully nonlinear PDEs and applications.
Acta Math. Vietnam., 40(2):255-269, 2015. ISSN 0251-4184,2315-4144. doi: 10.1007/
s40306-015-0128-x. URL https://doi.org/10.1007/s40306-015-0128~-x.

Come Huré, Huyén Pham, and Xavier Warin. Deep backward schemes for high-
dimensional nonlinear PDEs. Math. Comp., 89(324):1547-1579, 2020. ISSN 0025-
5718,1088-6842. doi: 10.1090/mcom/3514. URL https://doi.org/10.1090/mcom/
3514.

René Carmona and Mathieu Lauriere. Deep Learning for Mean Field Games and
Mean Field Control with Applications to Finance, 2021. URL https://arxiv.org/
abs/2107.04568.

Mathieu Lauriere, Sarah Perrin, Sertan Girgin, Paul Muller, Ayush Jain, Theophile
Cabannes, Georgios Piliouras, Julien Pérolat, Romuald Elie, Olivier Pietquin, and
Matthieu Geist. Scalable Deep Reinforcement Learning Algorithms for Mean Field
Games, 2022. URL https://arxiv.org/abs/2203.11973.

Mo Zhou, Jiequn Han, and Jianfeng Lu. Actor-Critic Method for High Dimensional
Static Hamilton—Jacobi—Bellman Partial Differential Equations based on Neural Net-
works. SIAM Journal on Scientific Computing, 43(6):A4043-A4066, January 2021.
ISSN 1095-7197. doi: 10.1137/21m1402303. URL http://dx.doi.org/10.1137/
21M1402303.

M. G. Crandall, L. C. Evans, and P. L. Lions. Some properties of viscosity solutions of

72

http://dx.doi.org/10.5539/ijsp.v1n1p77
http://dx.doi.org/10.5539/ijsp.v1n1p77
https://doi.org/10.1007/s40304-017-0117-6
https://doi.org/10.1007/s40304-017-0117-6
https://doi.org/10.1007/s40306-015-0128-x
https://doi.org/10.1090/mcom/3514
https://doi.org/10.1090/mcom/3514
https://arxiv.org/abs/2107.04568
https://arxiv.org/abs/2107.04568
https://arxiv.org/abs/2203.11973
http://dx.doi.org/10.1137/21M1402303
http://dx.doi.org/10.1137/21M1402303

REFERENCES

[33]

[35]

[36]

[39]

Hamilton-Jacobi equations. Transactions of the American Mathematical Society, 282

(2):487-502, 1984. ISSN 00029947. URL http://www. jstor.org/stable/1999247.

Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions. User’s guide
to viscosity solutions of second order partial differential equations. Bull.
Amer. Math. Soc. (N.S.), 27(1):1-67, 1992. ISSN 0273-0979,1088-9485.
doi: 10.1090/S0273-0979-1992-00266-5. URL https://doi.org/10.1090/
S50273-0979-1992-00266-5.

Huyén Pham. Continuous-time stochastic control and optimization with financial
applications, volume 61 of Stochastic Modelling and Applied Probability. Springer-
Verlag, Berlin, 2009. ISBN 978-3-540-89499-5. doi: 10.1007/978-3-540-89500-8. URL
https://doi.org/10.1007/978-3-540-89500-8.

Olav Kallenberg. Foundations of modern probability. Probability and its Appli-
cations (New York). Springer-Verlag, New York, second edition, 2002. ISBN 0-
387-95313-2. doi: 10.1007/978-1-4757-4015-8. URL http://dx.doi.org/10.1007/
978-1-4757-4015-8.

W.H. Fleming and H.M. Soner. Controlled Markov Processes and Viscosity Solu-
tions. Stochastic Modelling and Applied Probability. Springer New York, 2006. ISBN
9780387310718. URL https://books.google.com/books?id=4Bjz2iWmLyQC.

Sebastian Ruder. An overview of gradient descent optimization algorithms. CoRR,

abs/1609.04747, 2016. URL http://arxiv.org/abs/1609.04747.

Shai Shalev-Shwartz and Yonatan Wexler. Minimizing the Maximal Loss: How and
Why. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of
The 33rd International Conference on Machine Learning, volume 48 of Proceedings of
Machine Learning Research, pages 793-801, New York, New York, USA, 20-22 Jun
2016. PMLR. URL https://proceedings.mlr.press/v48/shalev-shwartzbl6.
html.

K. Biswas, S. Kumar, S. Banerjee, and A. Pandey. Smooth Maximum Unit: Smooth
Activation Function for Deep Networks using Smoothing Maximum Technique. In

2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

73

http://www.jstor.org/stable/1999247
https://doi.org/10.1090/S0273-0979-1992-00266-5
https://doi.org/10.1090/S0273-0979-1992-00266-5
https://doi.org/10.1007/978-3-540-89500-8
http://dx.doi.org/10.1007/978-1-4757-4015-8
http://dx.doi.org/10.1007/978-1-4757-4015-8
https://books.google.com/books?id=4Bjz2iWmLyQC
http://arxiv.org/abs/1609.04747
https://proceedings.mlr.press/v48/shalev-shwartzb16.html
https://proceedings.mlr.press/v48/shalev-shwartzb16.html

REFERENCES

[40]

[44]

pages 784-793, Los Alamitos, CA, USA, Jun 2022. IEEE Computer Society. doi:
10.1109/CVPR52688.2022.00087. URL https://doi.ieeecomputersociety.org/
10.1109/CVPR52688.2022.00087.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. JAX: composable transformations of

Python+NumPy programs, 2018. URL http://github.com/google/jax.

losif Pinelis. Order statistics on the spacings between order statistics for the uniform

distribution, 2019.

A. Erdélyi and F. G. Tricomi. The asymptotic expansion of a ratio of gamma

functions. Pacific Journal of Mathematics, 1(1):133 — 142, 1951.

Franco Scarselli and Ah Chung Tsoi. Universal approximation using feedforward
neural networks: A survey of some existing methods, and some new results.
Neural Networks, 11(1):15-37, 1998. ISSN 0893-6080. doi: https://doi.org/10.
1016/50893-6080(97)00097-X. URL https://www.sciencedirect.com/science/
article/pii/S089360809700097X.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5):359-366, 1989. ISSN
0893-6080. doi: https://doi.org/10.1016,/0893-6080(89)90020-8. URL https://www.
sciencedirect.com/science/article/pii/0893608089900208.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control
Signals Systems, 2(4):303-314, 1989. ISSN 0932-4194,1435-568X. doi: 10.1007/
BF02551274. URL https://doi.org/10.1007/BF02551274.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Universal approxima-
tion of an unknown mapping and its derivatives using multilayer feedforward net-
works. Neural Networks, 3(5):551-560, 1990. ISSN 0893-6080. doi: https://doi.org/
10.1016/0893-6080(90)90005-6. URL https://www.sciencedirect.com/science/
article/pii/0893608090900056.

74

https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.00087
https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.00087
http://github.com/google/jax
https://www.sciencedirect.com/science/article/pii/S089360809700097X
https://www.sciencedirect.com/science/article/pii/S089360809700097X
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://doi.org/10.1007/BF02551274
https://www.sciencedirect.com/science/article/pii/0893608090900056
https://www.sciencedirect.com/science/article/pii/0893608090900056

REFERENCES

[47]

[48]

[49]

[50]

[52]

[53]

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neu-
ral Networks, 4(2):251-257, 1991. ISSN 0893-6080. doi: https://doi.org/10.
1016/0893-6080(91)90009-T. URL https://www.sciencedirect.com/science/
article/pii/089360809190009T.

M. Stinchcombe and H. White. Approximating and learning unknown mappings
using multilayer feedforward networks with bounded weights. In 1990 IJCNN In-
ternational Joint Conference on Neural Networks, pages 7-16 vol.3, 1990. doi:

10.1109/1JCNN.1990.137817.

H. N. Mhaskar and Charles A. Micchelli. Degree of approximation by neural and
translation networks with a single hidden layer. Adv. in Appl. Math., 16(2):151-
183, 1995. ISSN 0196-8858,1090-2074. doi: 10.1006/aama.1995.1008. URL https:
//doi.org/10.1006/aama.1995.1008.

Tim De Ryck, Samuel Lanthaler, and Siddhartha Mishra. On the approximation
of functions by tanh neural networks. Neural Networks, 143:732-750, 2021. ISSN
0893-6080. doi: https://doi.org/10.1016/j.neunet.2021.08.015. URL https://www.
sciencedirect.com/science/article/pii/S0893608021003208.

Denis Belomestny, Alexey Naumov, Nikita Puchkin, and Sergey Samsonov. Si-
multaneous approximation of a smooth function and its derivatives by deep neu-
ral networks with piecewise-polynomial activations. Neural Networks, 161:242-253,
2023. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2023.01.035. URL
https://www.sciencedirect.com/science/article/pii/S0893608023000473.

Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J. Cree. Regularisation
of neural networks by enforcing Lipschitz continuity. Mach. Learn., 110(2):393-416,
feb 2021. ISSN 0885-6125. doi: 10.1007/s10994-020-05929-w. URL https://doi.
org/10.1007/s10994-020-05929-w.

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George
Pappas. Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural
Networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and

R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.

75

https://www.sciencedirect.com/science/article/pii/089360809190009T
https://www.sciencedirect.com/science/article/pii/089360809190009T
https://doi.org/10.1006/aama.1995.1008
https://doi.org/10.1006/aama.1995.1008
https://www.sciencedirect.com/science/article/pii/S0893608021003208
https://www.sciencedirect.com/science/article/pii/S0893608021003208
https://www.sciencedirect.com/science/article/pii/S0893608023000473
https://doi.org/10.1007/s10994-020-05929-w
https://doi.org/10.1007/s10994-020-05929-w

REFERENCES

[56]

[57]

[59]

[60]

Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_
files/paper/2019/file/95e1533eb1b20a97777749fb94fdb944-Paper . pdf.

Patricia Pauli, Anne Koch, Julian Berberich, Paul Kohler, and Frank Allgower.
Training Robust Neural Networks Using Lipschitz Bounds. IEEE Control Systems
Letters, 6:121-126, 2022. doi: 10.1109/LCSY'S.2021.3050444.

Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI, second edition,
2010. ISBN 978-0-8218-4974-3. doi: 10.1090/gsm/019. URL https://doi.org/10.
1090/gsm/019.

Maria Michaela Porzio. Existence of solutions for some “noncoercive” parabolic
equations. Discrete and Continuous Dynamical Systems, 5(3):553 — 568, 1999. doi:
10.3934/deds.1999.5.553. URL https://www.scopus.com/inward/record.uri?
eid=2-s2.0-0033416895&d0oi=10.3934%2fdcds.1999.5.553&partner ID=40&md5=
95eaebb2e827c32caeddc66e3deab434.

Martina Magliocca. Existence results for a Cauchy-Dirichlet parabolic problem with
a repulsive gradient term. Nonlinear Analysis, 166:102-143, 2018. ISSN 0362-546X.
doi: https://doi.org/10.1016/j.na.2017.09.012. URL https://www.sciencedirect.
com/science/article/pii/S0362546X17302390.

P. Chandra and Y. Singh. Feedforward sigmoidal networks — equicontinuity and
fault-tolerance properties. IEEE Transactions on Neural Networks, 15(6):1350-1366,
2004. doi: 10.1109/TNN.2004.831198.

Chuwei Wang, Shanda Li, Di He, and Liwei Wang. Is L? Physics Informed Loss
Always Suitable for Training Physics Informed Neural Network? In Advances in
Neural Information Processing Systems, volume 35, pages 8278-8290. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/£fil1e/374050dc3£211267bd6bf0ea24eael184-Paper-Conference. pdf.

Laurent Condat. Fast projection onto the simplex and the ¢;-ball. Mathematical
Programming, 158(1):575-585, 2016. doi: 10.1007/s10107-015-0946-6. URL https:
//doi.org/10.1007/s10107-015-0946-6.

76

https://proceedings.neurips.cc/paper_files/paper/2019/file/95e1533eb1b20a97777749fb94fdb944-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/95e1533eb1b20a97777749fb94fdb944-Paper.pdf
https://doi.org/10.1090/gsm/019
https://doi.org/10.1090/gsm/019
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033416895&doi=10.3934%2fdcds.1999.5.553&partnerID=40&md5=95eaebb2e827c32cae4dc66e3dea5434
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033416895&doi=10.3934%2fdcds.1999.5.553&partnerID=40&md5=95eaebb2e827c32cae4dc66e3dea5434
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033416895&doi=10.3934%2fdcds.1999.5.553&partnerID=40&md5=95eaebb2e827c32cae4dc66e3dea5434
https://www.sciencedirect.com/science/article/pii/S0362546X17302390
https://www.sciencedirect.com/science/article/pii/S0362546X17302390
https://proceedings.neurips.cc/paper_files/paper/2022/file/374050dc3f211267bd6bf0ea24eae184-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/374050dc3f211267bd6bf0ea24eae184-Paper-Conference.pdf
https://doi.org/10.1007/s10107-015-0946-6
https://doi.org/10.1007/s10107-015-0946-6

REFERENCES

[61]

[62]

[65]

[66]

[68]

[69]

Tao Bai, Jingi Luo, Jun Zhao, Bihan Wen, and Qian Wang. Recent Advances in
Adversarial Training for Adversarial Robustness. CoRR, abs/2102.01356, 2021. URL
https://arxiv.org/abs/2102.01356.

Pongpisit Thanasutives, Masayuki Numao, and Ken-ichi Fukui. Adversarial Multi-
task Learning Enhanced Physics-informed Neural Networks for Solving Partial Dif-
ferential Equations. In 2021 International Joint Conference on Neural Networks

(IJCNN), pages 1-9, 2021. doi: 10.1109/1JCNN52387.2021.9533606.

Yao Li, Shengzhu Shi, Zhichang Guo, and Boying Wu. Adversarial Training for
Physics-Informed Neural Networks, 2023.

Soichiro Kumano, Hiroshi Kera, and Toshihiko Yamasaki. Adversarial Train-
ing from Mean Field Perspective. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Informa-
tion Processing Systems, volume 36, pages 75097-75150. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
edcdlaal72dceda2ea9d45a48f25d3e3-Paper-Conference.pdf.

Philipp Grohs and Lukas Herrmann. Deep neural network approximation for high-

dimensional parabolic Hamilton-Jacobi-Bellman equations, 2021.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Universal approxima-
tion of an unknown mapping and its derivatives using multilayer feedforward net-
works. Neural Networks, 3(5):551-560, 1990. ISSN 0893-6080. doi: https://doi.org/
10.1016,/0893-6080(90)90005-6. URL https://www.sciencedirect.com/science/
article/pii/0893608090900056.

Hitoshi Ishii. Viscosity solutions to nonlinear partial differential equations. Sugaku,

46(2):144-157, 1994. ISSN 0039-470X,1883-6127.

Walter Rudin. Real and complex analysis. McGraw-Hill Book Co., New York, third
edition, 1987. ISBN 0-07-054234-1.

Lawrence C. Evans. The perturbed test function method for viscosity solutions of

nonlinear PDE. Proc. Roy. Soc. Edinburgh Sect. A, 111(3-4):359-375, 1989. ISSN

77

https://arxiv.org/abs/2102.01356
https://proceedings.neurips.cc/paper_files/paper/2023/file/edcd1aa172dceda2ea9d45a48f25d3e3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/edcd1aa172dceda2ea9d45a48f25d3e3-Paper-Conference.pdf
https://www.sciencedirect.com/science/article/pii/0893608090900056
https://www.sciencedirect.com/science/article/pii/0893608090900056

REFERENCES

[70]

[71]

[73]

[74]

[75]

0308-2105,1473-7124. doi: 10.1017/S0308210500018631. URL https://doi.org/
10.1017/50308210500018631.

Daniel Lacker. Limit theory for controlled McKean-Vlasov dynamics. SIAM J.
Control Optim., 55(3):1641-1672, 2017. ISSN 0363-0129,1095-7138. doi: 10.1137/
16M1095895. URL https://doi.org/10.1137/16M1095895.

René Carmona and Francois Delarue. Forward-backward stochastic differential
equations and controlled McKean-Vlasov dynamics. Ann. Probab., 43(5):2647—
2700, 2015. ISSN 0091-1798,2168-894X. doi: 10.1214/14-AOP946. URL https:
//doi.org/10.1214/14-A0P946.

Jian Li, Jing Yue, Wen Zhang, and Wansuo Duan. The deep learning Galerkin
method for the general Stokes equations. J. Sci. Comput., 93(1):Paper No. 5, 20,
2022. ISSN 0885-7474,1573-7691. doi: 10.1007/s10915-022-01930-8. URL https:
//doi.org/10.1007/s10915-022-01930-8.

Lawrence C. Evans and Ronald F. Gariepy. Measure theory and fine properties of
functions. Textbooks in Mathematics. CRC Press, Boca Raton, FL, revised edition,
2015. ISBN 978-1-4822-4238-6.

Juha Heinonen. Lectures on Analysis on Metric Spaces. Springer New
York, 2001. doi: 10.1007/978-1-4613-0131-8. URL https://doi.org/10.1007/
978-1-4613-0131-8.

Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J. Cree. Regularisation
of neural networks by enforcing Lipschitz continuity. Machine Learning, 110(2):
393-416, December 2020. ISSN 1573-0565. doi: 10.1007/s10994-020-05929-w. URL
http://dx.doi.org/10.1007/s10994-020-05929-w.

78

https://doi.org/10.1017/S0308210500018631
https://doi.org/10.1017/S0308210500018631
https://doi.org/10.1137/16M1095895
https://doi.org/10.1214/14-AOP946
https://doi.org/10.1214/14-AOP946
https://doi.org/10.1007/s10915-022-01930-8
https://doi.org/10.1007/s10915-022-01930-8
https://doi.org/10.1007/978-1-4613-0131-8
https://doi.org/10.1007/978-1-4613-0131-8
http://dx.doi.org/10.1007/s10994-020-05929-w

	1 Introduction
	1.1 N-Agent Optimization Problems
	1.2 Mean Field Control Problems
	1.3 Numerical Solutions to High-Dimensional PDE
	1.4 Main Results
	1.5 Notation
	1.6 Organization

	2 Assumptions and Known Results for the MFCP
	2.1 Assumptions for the MFCP
	2.2 Existence, Uniqueness, and Convergence Results for the MFCP
	2.3 Derivations of HJB Equations

	3 Convergence of the DGM
	3.1 DGM Algorithm
	3.2 Universal Approximation Via Neural Networks
	3.3 Uniform Convergence of DGM Approximators
	3.4 Comparison to DGM Algorithm with L2-Loss
	3.4.1 Equicontinuous and Uniformly-Bounded Neural Networks
	3.4.2 Stability Properties of the DGM

	4 Numerical Experiments
	4.1 DGM Experiments
	4.2 Improved Sampling Via Adversarial Training

	5 Conclusions
	References
	References

